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Abstract

Motivated by the concept called unique eccentric point (u.e.p) [14], Kishori
et al. in [2] generalized the concept as k- eccentric point graph. A graph tt is
called an unique eccentric point (u.e.p) graph if each point of tt has a unique
eccentric point where as in k-eccentric point graph every vertex has exactly k-
eccentric vertices. Here we are denoting k-eccentric graph as A-eccentric graph
and studied its property with peripheral path matrix.
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1 Introduction

Let tt be a connected, nontrivial graph with vertex set V (tt) and edge set E(tt)
and let |V (tt)] = nand |E(tt)| = m. Letu and v be two vertices of agraph tt. The
distance d(u, v|tt) between the vertices u and v is the length of a shortest path
connectingu and v. If u=v then d(u, v|tt) = 0. The eccentricity e(v) of a vertex
v in a graph tt is the distance between v and a vertex farthest from v in tt. The
diameter diam(tt) of tt is the maximum eccentricity of tt, while the radius rad(tt) is
the smallest eccentricity of tt. A vertex v with e(v) = diam(tt) is called a peripheral
vertex of tt. A set of peripheral vertices of tt is called as periphery and is denoted
as P (tt). The peripheral path matrix My(tt) = [p;] , whose entries are 1 if there is
a peripheral path between v; and v; in tt and O otherwise.

The peripheral path energy (p-energy (in short)) of a graph tt is defined as the
sum of the absolute values of p- eigenvalues of the M,(tt). i.e,

=
By =Ex(t) = la ®

The form of Eq. (1) is chosen so as to be fully analogous to the definition of graph
energy [8, 5, 7].

=
E =E(tt) = [Ai]

i=1
where, A1, 5, ..., A, are the ordinary eigenvalues [9], i.e the eigenvalues of the adja-
cency matrix A(tt). Observe that the graph energy E(tt) in a past few years has
been extensively studied and surveyed in Mathematics and Chemistry [12, 13, 15,
17, 18, 19, 21, 25, 26, 10, 11, 16, 20, 23]. Through out the paper |P (tt)] = k with
labellings v4, va, ..., vy, where 2 < k <n.

The characteristic polynomial of My(tt) is the det(al M,(tt)). Itisreferred to
as a characteristic polynomial of tt and is denoted by w(tt; a) = coa" + cia™™* +
c,a"? + ...+ c,. The roots ai, Az, ..., a, of the polynomial yp(tt; a) is called the
eigenvalues of M(tt).

The eigenvalues of My(tt) are said to be the peripheral path eigenvalues (or p-
eigenvalues (in short)) of tt. Since My(tt) is a real, symmetric matrix, the p-
eigenvalues are real and can be ordered in non-increasing order, a; 2 a, 2, ..., 2 ,.
Then the p-spectrum of a graph tt is the set of p-eigenvalues of My(tt), together
with the multiplicities as p-eigenvalues of M(tt). If the p-eigenvalues of M,(tt) are
a; 2 ap 2 ... 2 a, and their multiplicities are m(a,), m(az), ..., m(a,), then the
result will be

p = Spec(tt) = ai az R ap z |
) m(ai) m(az) . .. m(an)

For Example, let tt be a graph as shown below Figure 1.
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Figure 1: tt is a graph of order n = 6 with k = 3 peripheral vertices.
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Let e, = {u : d(u, v) = diam(tt)}. Clearly, |e,;| = 2 and |e,,| = |evs| =1 and
characteristic polynomial of gt igw(tt; @) = -2a* + o
whose, p- eigenvaluesare— 2, 2,0, 0, 0, 0. And hence, p-energy of tt is 2.8284.
Motivated by the concept called unique eccentric point (u.e.p) [14], Kishori et
al. in [2] generalized the concept as k- eccentric point graph. A graph ttis called an
unique eccentric point (u.e.p) graph if each point of tt has a unique eccentric point
where as in k-eccentric point graph every vertex has exactly k-eccentric vertices.
Hereweare denotingk-eccentricgraph as A-eccentric graph and studied its property
with peripheral path matrix. For more details about the Peripheral path matrix,
Peripheral path energy, Peripheral distance energy, Peripheral path equi-energy and
Peripheral Wiener index one can refer [22],

Deftnition 1.1. A vertex u is said to be an eccentric vertex of v if e(v) = d(u, v)

u, v €V (tt) . A graph tt is A- eccentric graph if for every x of V (tt), there are A-
eccentric vertices.
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For Example: Refer the Figure 2.
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Figure 2: tty, tt,, and ttz are the 1, 2 and 3 eccentric graphs respectively

2 Properties of A-eccentric graph
Theorem?2.1. Let tt be A-eccentric graph. Then,
1. Ais an p-eigenvalues of tt.
2.1f tt is connected, then the multiplicity of A is 1.
3.For any p-eigenvalue a of tt, we have |a| £ A
Proof.
l.Letu=1]11,1.., l]t, then if M, is peripheral path matrix of tt, we have,
M, = Au. 2)
This is true because there are A 1’ in each row. Thus A is a p-eigenvalue of tt.
2. Let X =[Xq, X2, ..., xn]t denote any non zero vector for which
AX = AX (3)

suppose that x; is an entry of X with the largest absolute value, then the Eq
(3) can be expressed as
(AX);=AX;

and hence >
Xj = AXJ'
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where summation runs over those A vertices v; which are an eccentric vertex
to v;. If tt is connected, we may proceed successively in this way, eventually
showing that all entries of X are equal. Thus X is a multiple of u and the
space of eigenvector associated with the p-eigenvalue A has dimension 1.

3. Suppose
that Ay=ay ,y f=0 4)
and y; denote an entry of y which is least in absolute value, as in condition 2.
we have,
=
Yi = ay; and
=
lallyl = | il
=
lallyil = lyil
lallyil = Alyil
== |a] < Aas required.

O

Proposition2.2. If tt is A-eccentric graph and a is a p-eigenvalue of M(tt), then
no p-eigenvalue of M,(tt) has absolute value greater than A.

Proof. Let a be a p-eigenvalue of M,(tt) and x = [X1, X2, ..., X]' be corresponding
eigenvector. Let x; be the entry of x whose absolute value is greater. Hence,

> = .
axi = aixj;1=1,2,..k
=1
Now
|lal|xi| < |xil a;;1=1,2, ..k

=1

since tt is A- eccentric graph,

Hence,

lallxil < [xil.|A| ==]a] < |A].

Philos Multi- Disciplinary Journal ISSN 2456-9828 e-Journal Nov 2018

Page5



Corollary2.3. Suppose tt is unique eccentric point graph then no p-eigenvalue of
M, (tt) has absolute value greater than 1.

Proof. Let a be a p-eigenvalue of Mp (tt) and x = [X4, X», ... corresponding
eigenvector. Let x; be the entry of x whose absolute value is greatest. Hence,

= .
ax; = aixj;1=1,2,..k
=1
Now.
|lal|xi| < |xil a;;1=1,2, ..k
=1

since tt is unique eccentric point graph,
== |a| = 1.

O

Proposition2.4. Let My(tt) be n x n real matrix with v, Vo, ..., Vi peripheral ver-
tices. Let My, (tt) be k x k real sub matrix of My(tt) . If tt is unique eccentric point graph
then there is a non-zero column vector x such that Ax = x

Proof. Let M, (tt) — | be a matrix which has the properties that the sum of the
entries in each column is equal to zero. Since tt is unique eccentric point graph,
M, (tt) — 1 results in to a matrix whose first row is zero. (If not a small operation

can be applied, i.e. R1 — R1+R>+, ..., +R¢ to My, (tt)-1). Hence, |M,, (tt)-1| = O.
Thus 1 is a p-eigenvalue of A and there is an eigenvector x f= 0 such that Ax = x.[]

3 A-Eccentric Trees:

For A-eccentric tree, the peripheral path matrix M,(T ) is as follows:
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Vi V2 VE  Ve+1  VE+2 Vo Vog+1  V2E+2 Vn

O ]
Vi 0 O 0 1 1 -1 0 o --- 0
vw 700 0 1 | 0 0 - 0p
[] ' []
Vi 0O 0 --- 0 1 1 1 0 0 0
Vern 1 1 1 0 0 0O O 0 0
M (T) = vz 1 1 -~ 1 O 0 0O O 0 =
p
O O
e 11 0 100 o -« 0 0 0 0
o1 0 O oo 0O O o --- 0 O 0 0
v 0 0 - 0 O o --- 0 O 0 0
O . . in
. |:| . . - . . . - . . . - .
Vi OO0 - 0 O o - 0 O o - 0 ..

This matrix representation takes the form

z z
Aopxan | B2ax(n-24)
B%n—ZA)XZA | C(r1—2A)><n—2A)

Mp(T) =

nxn

Note that sub matrix B, B' and C are zero - matrix, where as A is non-zero matrix.
A sub matrix A is 2A x 2A sub matrix of M,(T ), whose entries are as follows:

o0 .---011.--- 10
700 .- 011 1p
U 0
0 -0
A= 00 01 1. 1
711 10 0 - On
711 10 0 - On
1 1 --- 10 O --- 0O
Symbolically A can be represented as
z z
A= Oaxa | Inxa
- JL, o
AxA | PAXA - oaxA

Where J is a A XA matrix having all entries 1.

Observation3.1. A sub matrix A of My(T ) has just two linearly independent rows
and so its rank is 2. Consequently O is an p-eigenvalue of M,(T ) with multiplicity
2A -2,
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Next, we give the Characteristic polynomial of a sub matrix A of My(T ). Sup-

pose,
0 O
ain e ai, (a-1) aia ag, (a+1) ai 2(a-1) aiz2a
ao1 e az,(a-1) aza az (A+1) a2 2(a-1) az oa
0 . . . 0
aa-1,1 0 @a-),a-1) &a-1),A | Aa-1),(A+1) aa-1),2(A-1)  Aga-1),2A
_ aa 1 e aa, (A-1) aa A aa,(A+1) aa,2(A-1) aa 2a
A=p a U
(+D).1 o Barn), A1) AA+DA | @), (atd) Aa+1),2(A-1)  (A+1),2A
Aa+2),1 -0 Aar),A-1)  BA+2),A | BA+2),(A+1) A(a+2),2(A-1) A(a+2),2A
aea-1),1 o+ Aa-1),(A-1)  dea-1).A | 8a-1),(A+1) Aea-1),2(A-1)  (2a-1),(28)
deay,l e A1) a(2a),A a(2a),(A+1) a(2p),2(A-1) a(2a),(28) 2AX2A
D .
0 O0-- 0 0|1 1 11
0 O0-- 0 0|1 1 11
0 O - 0 O|1 1 11
0 0 - 0 0|1 1 11
= A= .
11 . 1 1|10 0 0 0
ni11-- 1 1/0 0 0 0-
D .
11 - 1 1/0 0 0 0
11 . 1 1|10 0 0 0 PAX2A
then,
-a O 0 0 1 1 1 1
0 -a 0o 0 1 1 11
V) V) -a V) 1 1
0 0 0O -a 1 1 1 1
A I 1 1 1 1 -a O 1 1
IA-all = 1 1 1 1 0 -a O O =0
0 0
1 0 0 . .
1 0 0 -a 0
0 =@ pon

now, subtract (A + 1) row from (A + 2)", (A + 3)", ..., (2A - 1), (2A)" rows, then
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the result will be,

o OO

0
0

o OO

0
0

|
Q

o O

0
0

o~ d o

0
0

1 1 - 1 1

1 1 1 1

1 1 1 1

1 1 1 1 _
-a O 0O O =0
a -a 0 0

a O -+ -a O

a O -+ 0 -a

"2AX2A

Adding (A +2)", (A+3)", ..., QA - 1)", (2A)" column to (A + 1)™ column,

-a

o OO

o

0

o OO

o

0

|
Q

o O

o

0

A 1 - 1 1

A 1 1 1

A 1 1 1

A 1 1 1 :
-a O 0O O =0
0 -a 0O O

O 0 - -a O

O 0 - 0 -a

"2AX2A

Again by subtracting (1)* column from (2)™, (3)", ..., (A)" column, we have

A1 - 1 1
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0 0 -a O A 1 1 1

0 0 O -a A 1 1 1 -0
1 0 0 O -a O 0 0

0 0 0 0 0 -a 0 0

0 0 0 0 0 O -+ -a O

0 o -~ 0 0 0 O -+ 0 -a "AXOA

Expanding from 1% column.
- (_1)l+lAl + (_1)A+l+lA2 - 0 (5)
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LetA; = -

Let A, = -

n(pw the determlnant of AJ}
R, +R,, R'= 3 R5

2
then,

-0
A2: 0
"0

OO OoOOo-

o

eloNe

0 0 A 1 1 1
@ o A 1 11
0 0 -a O 1 1
0 0 0 - 0 0
a 0 0
0 0 0 0O -+ -a 0
0 0 0 0 - 0 -a opgyxean
a a A 1 1 1
0 0O A 1 1 1
-a 0O A 1 1 1
O -a A 1 1 1
0 0O O -a 0 0
0 O 0 0 - -« 0
0 o o o - 0 -a "(2A-1yx(2A-1)
(—a)*™*, then l;o find the petermlnant of A}Z change
R, R=Ry4 + R Rs . R'= Ra
2 4 4 A (A-1)
a a A 1 1 1
a a 2A 2 2 2
0 0 (A-DA 1 11
0 O ~ A - A A
00 0 -a - 0 0 -
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0] O -+ -a O
0 O -+ 0 -a

"0 0O O
-0 00 "(2A-1)x(2A-1)
then |A;| = a®™P.AZ - a® D == |A;| = (-1)*.AZa® 2, By substituting A,
and A, to the Eq (5) we get
|A—aI| — (_1) 1+1A1 + (_1) A+l+lp\2 =0
|A _ aIl — (_1)l+l(_a)2A—l + (_1)A+l+l{(_l)A_l.Az.a(ZA_Z)} =0

- (_1)2Aa2A + (_1)A+2A2a2A—2 — 0
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4 Basic Properties of A-Eccentric Tree:

Proposition4.1. If T is A-eccentric tree and if A is one of a p-eigenvalue of a sub
matrix A of My(T ), then —A is another p-eigenvalue of My(T ). And multiplicity of
A and -Aiis 1 each.

Proof. Let tt be A-eccentric tree and A be a sub matrix of My(T).
z L
A= 0 J

t .
J 0 2A%2A

Clearly J is A x A sub matrix of A with all its entries 1. Let x be an eigenvector of
M,(T ) corresponding to a. Then,

2 )23 z )3 2
o J X1 - a X1

J t 0 X2 X2

And also one can verify that,

zOBzlez— alez

B' 0 —X2 T =X2

Also, since T is A-eccentric tree M,(T), every 1* column and (A+ 1)™ column, every
2" column and (A+2)" column are linearly independent and so on, every i where
1<i<Aand (i + A)" column are linearly independent.

Clearly one linearly independent eigenvector for a produces one linearly inde-
pendent eigenvector for —a. Thus multiplicity of a and —a is one each. |

Proposition4.2. Suppose A = 1 then My(T ) has at least one positive p-eigenvalue
a whose value is 1 and there is an eigenvector y f= 0 such that My(T)y =ay fr
a>0.

Proof. Suppose T is A-eccentric tree and A = 1. Then clearly T has exactly two
peripheral vertices. Hence, My(T ) is as follows:

e NelieoNe)

)

o®loo

0 1|0
1010
0 0|0
0 0|0

000O0-- 0 .
Clearly a sub matrix A of My(T ) is 2 x szatrzix
01

10

ie, A=
2%x2
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The characteristic polynomial of A is a® - 1 = 0 whose p-eigenvalues are a; = +1

and a, = -1. Clearly a; and a, are two distinct real p-eigenvalues and one of the
p-eigenvalue is 1. Thus My(T ) has at least one positive p-eigenvalue a and there is
an eigenvector y f= 0 such that Ay = ay. O

Observation4.3. If Tis atree with k peripheral vertices then T is A-eccentric if
and only if k = k; U k; such that |ki| = |ka].

Observation4.4. Suppose a tree T with k peripheral vertices is A-eccentric then k
IS even.
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