

ST.PHILOMENA'S COLLEGE (AUTONOMOUS), MYSURU

(AFFILIATED TO UNIVERSITY OF MYSORE & REACCREDITED BY NAAC WITH B⁺⁺ GRADE)

PROGRAMME: M.Sc in BIOCHEMISTRY

CBCS with Learning Outcome Based Curriculum

Academic years: 2020-22

{Approved in the Academic Council Meeting held on 12.01.2021}

{The Academic Year of 2020-21 was commenced on 24.01.2021 due to first wave of Covid-19 Pandemic}

ST. PHILOMENA'S COLLEGE (AUTONOMOUS) MYSORE PROGRAMME: M.Sc Biochemistry (For Candidates admitted during the Academic year 2020 -2021 onwards)

PREAMBLE

M.Sc Biochemistry course was started in the year 2016. Since then, department has taken periodic revision of syllabus in 2018. At present it's going for third revision. This programme endeavours to provide students a broad based training in biochemistry with a solid background of basic concepts as well as exposing them to the exciting advancements in the field. In addition to theoretical knowledge, significant emphasis has been given to provide hands on experience to the students in the forefront areas of experimental biochemistry.

The goal of the syllabus is to make the study of Biochemistry popular, interesting and encouraging to the students for higher studies including research. The new and updated syllabus is based on a basic and applied approach with vigour and depth. At the same time precaution is taken to make the syllabus comparable to the syllabi of other universities and the needs of industries and research.

The current revision focussed on learner's centric and outcome based curriculum as per the UGC guidelines. The frame work of learning outcome based curriculum includes Vision and Mission statements of the Institute, Vision and Mission statements of the department, Programme Educational Objectives (PEOs), Programme Outcomes (POs), Programme Specific Outcomes (PSOs), Course Outcomes (COs), Evaluation and Result analysis, Teaching and learning process, technological tools, sharing of resources by industry partners with the institution and active feedback of the course outcome from the industry.

The learner centric curriculum provides and enables a continuous improvement of curriculum, teaching learning process, teaching resources, assessment methods, evaluation rubrics, validity and reliability of evaluation.

The curriculum is designed with compulsory hardcore courses and soft-core electives to equip the students with required knowledge and skills by the employers, to build learner competencies and make them self-learners.

The student can choose from a pool of electives that are offered below:

- 1. Skill Enhancing Electives,
- 2. Interdisciplinary Electives,
- 3. Ability Enhancing Electives,

4. Generic Electives

5. Self-Study Electives

The students will have flexibility, academic mobility and maximum utilization of human and material resources.

The following modifications are incorporated in the revised syllabus from the academic year 2020-21.

S1	Semester	Existing Paper	New Paper	Credits	Justification	% of
No		replaced				Changes
1.			Clinical Biochemistry SC	3	To apply skill in measurement of chemicals (both natural and unnatural) in blood, urine and other body fluids as these results are useful for detecting health problems, determining prognosis and guiding the therapy of a patient.	100
2.			Pharmacology and Toxicology SC	3	To provide basic information on pharmacology and toxicology and to prepare the students to handle pharmacological experiments.	100
3.	FIRST		Waste Management and Bioremediation SC-Skill Enhancement	2	To critically evaluate the Wastes collection, storage, segregation and disposal methods and go for biocomposting.	100
4.			Techniques in Forensic Science SC-Skill Enhancement	2	To Understand how a forensic investigation is initiated through preservation of evidences, as well as chemical, physical and biological methods of their analysis including analysis of DNA and other bodily fluids	100
5.			First Aid Management SC-Skill Enhancement	2	To learn & undertake immediate relief and rescue during emergency	100
6.			Endocrinology SC	3	To facilitate students to understand the hormonal action on metabolic aspects of organs.	100
7.	Second		Basics of Herbal Technology SC-ID	2	To understand the concepts, structure & pharmacological use of common plants used in Ayurveda.	100
8.			Functional Foods and Neutraceuticals SC	2	To Apply and understand the use of functional food for managing chronic diseases	100
9.			Histochemistry	2	To Asses the relationship	100
10.			Ecology & Evolution	2	To Analyse the diversity of evolutionary thoughts &	100

NEW PAPERS INTRODUCED TO THE EXISTING CURRICULUM

			SC		to Evaluate the	
					Environmental and	
11			Passarah		Community Ecology	
11.			Methodology		of research & its types and	
			SC- Ability	2	need to do the research in	100
			Enhancement		systematic way	
12.					To apply the necessary	
			Pathological		inputs for the other	
			diseases	2	disciplines like	100
			SC- Ability		Pharmacology, social and	
			Enhancement		medicinal biochemistry etc	
13.			Food		To Learn skills in	
			processing and		researching, analyzing and	
			Packaging	2	communicating food issues,	100
			SC- Ability		and preparing food by	
			Enhancement		applying theoretical concepts	
14.			Introduction to			
	Third		Manuscript	2	To Apply the knowledge & art	100
	Tinita		Writing &		of scientific writing	
			Presentation			
15			SC- Self Study			
15.			Advanced	2	fundamentals of food and its	100
			SC- Self Study	-	importance as nutrition	100
16.			Literature		It is necessary to do a review	
			review and	2	of existing research in order	
			publication		to identify gaps in the	100
			SC- Self Study		own projects	
17.			Plant Tissue			
			Culture &	2	to understand & apply the	100
			Grafting	4	culture& grafting	100
			SC			
18.			Advanced		To Understand the	
			Endocrinology	2	signal transduction &	100
			SC		hormonal regulations	
19.			Genomics,		To understand the basis	
			Proteomics		concept of Genomics	
	Forth		and	2	Proteomics and	100
			Bioinformatics		Bioinformatics	
20.			Fruits and			
			Vegetable		To assess the knowledge	
			preservation	2	related to fruit and vegetable	100
			SC- Ability		preservation	
21.		<u> </u>	OA, OC and			
			GMP	2	Understand the cGMP, QA &	100
			SC- Skill	4	pharmaceutical industry	100
22			Enhancement		To Assess the Importance	
44.			Biosatety,		of Biosefety Apolyze	
		-	safety and IPP	2	ethical aspects different	100
			SC- Skill	_	types of intellectual	
			Enhancement		property rights	
		•	FOTAL CHANGE	CS =50%		

SELF STUDY PAPERS OFFERED TO M.SC BIOCHEMISTRY STUDENTS

S. I No	Semester	Title of the Paper	Туре	Credits	Percentage of Change
1.	Т ћ	Introduction to Manuscript Writing	SC- Self Study	2	100

	And Research Presentation			
2.	Advanced Nutrition	SC- Self Study	2	100
3.	Literature review and publication	SC- Self Study	2	100

NEW INTERDISCPLINARY COURSES OFFERED TO SISTER DEPARTMENT

S1.	Semester	Title of the Paper	Туре	Credits	Percentage of
No					Change
1	q	Basics of Herbal Technology	SC- ID	2	100
2	uo	Biopharmaceuticals-I	SC- ID	2	100
3	Sec	Clinical Diagnosis in Health and Disease-I	SC- ID	2	100
4	_	Plant tissue culture and Grafting	SC- ID	2	100
5	rth	Biopharmaceuticals-II	SC- ID	2	100
6	ЪО	Clinical Diagnosis in Health and Disease-II	SC- ID	2	100

NEW OPEN ELECTIVE COURSE OFFERED TO UNRELATED DEPARTMENT

Sl No	Semester	Title of the Paper	Туре	Credits	Percentage of
					Change
1	pu	Biochemistry in Daily Life	OE	2	100
2	Secoi	Biochemistry of Common Disorders	OE	2	100
4	ťħ	Lifestyle Disorders	OE	2	100
6	For	Fundamentals of Biochemistry	OE	2	100

CERTIFCATE COURSE OFFERED

S. I No	Semester	Title of the Paper	Туре	Credits	Percentage of Change
1.	I/II/III/IV	Mushroom Cultivation Technology	Certificate Course	2	100
2.	, , ,	Vermi compost Technology	Certificate Course	2	100

S. I	Semester	Module of the course	Justification	Percentage
No				of Change
1.	First	Microscopic techniques Techniques in Biochemistry Module 5.0	This module has been added to give deep insight on Microscopic techniques as part of structure analysis	25
2.		Male & Female reproductive system of Human Physiology Module 6.0	To provide knowledge on reproductive system as it helps to study developmental biology in future class.	25
3.	Second	Bioenergetics & Biological Oxidation Carbohydrate and Lipid Metabolism Module 1.0 & 2.0	To gain knowledge on concepts of bioenergetics & Biological Oxidation	50
4.	Third	Plant Hormones & Host parasite interaction Nitrogen Metabolism Module 4.0 & 5.0	As it provides supporting knowledge on plant growth and development	50
5.		Concepts on Ecology Ecology & Evolution Module 1.0 & 2.0	It helps to identify the species concepts, Life history strategies; adaptive radiation	50
6.	Fourth	Development Biology Genetics & Development Biology Module 3.0, 4.0, 5.0	It helps to define the concepts and implications of developmental biology	25

CHANGES IN THE EXISTING COURSES

VISION AND MISSION OF THE COLLEGE

VISION:

The college is guided by the visionary zeal of providing value- based education to everyone irrespective of religion, caste, creed or sex by which the character is formed, intellect is explained and one can stand on his/her feet.

MISSION:

To transform young men and women who come to learn not from books, but also from life and to share the experience of working and playing together, this inculcates life skills to become good citizens with integrity and discipline.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To achieve academic excellence in biochemistry of imparting in-depth knowledge to the students, facilitating research activities and cater to the ever changing industrial demand & societal needs.

Mission:

- 1. To provide a learning environment that helps the students to enhance problem solving skills and be successful in their profession.
- 2. To prepare students to be lifelong learner by offering solid theoretical & practical foundation in various discipline of biochemistry and educating them about their professional and ethical responsibilities.
- 3. To Horne the skills and mould the students in such a way that they meet the requirements of the industry or to work independently.
- 4. To periodically update curriculum on par with emerging trends with inter and multi-disciplinary approach.

PO No.	Programme Educational Objectives (PEOs)
PEO-1	CORE PROFICIENCY To expertise the students to be able to apply fundamental knowledge related to pure sciences in an interdisciplinary manner for providing innovative solutions to need based problems for global impact.
PEO-2	PROFESSIONAL DEVELOPMENT To train students to critically analyze scientific data, draw objective conclusions and apply this knowledge for human welfare. Students should be able to demonstrate expertise and ethical perspective on areas related to Biochemistry.
PEO-3	PROFESSIONALISM To train the An ability to gain domain knowledge and know-how for successful career in academia, industry and research.
PEO-4	LEARNING ENVIRONMENT To Promoting lifelong learning to meet the ever evolving professional demands by developing ethical, inter personal and team skills.
PEO-5	TECHNICAL ACCOMPLISHMENTS To equip the students with the talent to interpret in core applications by building up a multi-disciplinary concept.

Mapping of Mission of the department with Programme Educational Objectives						
Mission		Programme Educational Objectives (PEOs)				
	PEOs-1	PEOs-2	PEOs-3	PEOs-4	PEOs-5	
M1	✓			✓		
M2		\checkmark			\checkmark	

МЗ		\checkmark	~	
M4	\checkmark			\checkmark

	Programme Outcomes (POs)		
PO No.	Upon completion of the Programme the student will be able -		
PO-1	Acquire practical skills to gather information, assess, create and execute new		
	ideas to develop entrepreneurial skills		
PO-2	Gain Proficiency in basic laboratory techniques and able to apply the scientific		
	method on lab to land		
PO-3	Inculcate a domestic and international perspective and be competent enough in		
	the area of life sciences		
PO-4	Learn to recognize potential laboratory safety and conserve nature and the		
	environment and also To enable to get quality education in the areas of		
	Biochemistry		

PSO No.	Programme Specific Outcomes(PSOs) Upon completion of the Programme the student will acquire -
PSO-1	to use current biochemical and molecular techniques and carry out experiments
PSO-2	Develop skills in cultivation of plants& also Prepare them to do higher studies in other biological fields like Genetic, Entomology, Biological Oceanography etc
PSO-3	Monitoring the changes in modern life styles leads to modern diseases
PSO-4	Developed critical thinking skills/laboratory techniques to be capable of designing, carrying out ,interpreting scientific experiments

Mapping	Mapping of Programme Educational Objectives with Program Outcomes and Programme Specific outcomes									
	Program Outcomes Program Specific Outcomes						nes			
Programme Educational Objectives	Programme EducationalPO-1PO-2PO-3PO-4PO-5PSO-1PSO-2PSO-3PSO-4PSObjectives							PSO-5		
PEOs-1	✓			~	~		\checkmark			
PEOs-2		✓				✓		✓		
PEOs-3			✓	~			\checkmark		✓	
PEOs-4					\checkmark	~				\checkmark

ST. PHILOMENA'S COLLEGE (AUTONOMOUS), MYSURU-570 015

CHOICE BASED CREDIT SYSTEM M.Sc., BIOCHEMISTRY COURSE STRUCTURE & SYLLABUS

			M.SC., BIOCHEMISTRY COURSE STRUC	IURE C	6 211	LADU	3		
S1. No	Subject Code No	QP Code	TITLE OF THE PAPERS	Туре	L	Т	Р	Credits	Total Credits
	I		FIRST SEMESTER	L			I I		L
1.			Techniques in Biochemistry	HC	3	0	0	3	\mathbf{h}
2.			Chemistry of Biomolecules	HC	3	0	0	3	
3.			Cell & Membrane Biochemistry	HC	3	0	0	3	
4.			Practical- Biomolecules & Techniques	HC	0	0	6	3	
5.			Any TWO of the Soft-Core General	SC	3	0	0	3	20
6.			courses to be chosen from List-A	SC	3	0	0	3	
7.			Any one of the Skill Based Courses to be chosen from the List-B	SEC	2	0	0	2	
			SECOND SEMESTER	l					
8.			Enzymology	HC	3	0	0	3	
9.			Molecular Biology	НС	3	0	0	3	
10			Carbohydrate & Lipid Metabolism	НС	3	0	0	3	
10.			Practical Enzyme & Metabolism	НС	0	0	6	3	
12.			Any TWO of the Soft-Core General courses	SC	2	0	0	2	> 20
13.			to be chosen from List-C	SC	2	0	0	2	
14.			Any ONE of the Interdisciplinary courses	ID	2	0	0	2	
			from sister department to be chosen	0.5	-	0			
15.			Any ONE of the Open elective courses from	OE	2	0	0	2	\mathcal{I}
			THIRD SEMESTER	I			1		
16.			Nitrogen Metabolism	HC	3	0	0	3	
17.			Genetic engineering & Gene Expression	HC	3	0	0	3	
18.			Immunology	НС	3	0	0	3	
19.			Practicals: Metabolism, Genetic engineering	НС	0	0	6	3	
			and Immunology	_	_			_	
20.			Any ONE of the Soft-Core General courses	SC	2	0	0	2	20
			to be chosen from List-D						
21.			Any ONE Ability Enhancement Courses to	AEC	2	0	0	2	
22.			Any ONE of the Self Study courses to be	SS	0	2	0	2	
			chosen from List-F						
23.			Any ONE of the Open elective courses from	OE	2	0	0	2	
			unrelated department to be chosen						
	1		FOURTH SEMESTER	0				1	
24.			Industry Internship/Project Work	HC	0	2	18	10	
25.			Any ONE of the Soft-Core General courses	SC	2	0	0	2	
26			to be chosen from List-G	AFC	0	0	0	0	
40.			be chosen from the List -H		4	0	0	4	$>^{18}$
27.			Any ONE of the Skill Based Courses to be	SEC	2	0	0	2	(
0.0			chosen from the List -I	ID	0				
28.			from sister department to be chosen	UI ID	2	U	0	2	
29.			Extra Credit Courses (MOOC)	-	-	-	-	4*	

Total Credits (HC-44+SC-16+ AEC-04+SEC-04+IDC-04+SS-02+OE- 04) MOOC-04*HC= HARD CORE PAPER. SC= SOFT CORE PAPER. AEC= ABILITY ENHANCEMENT COURSE.SEC = SKILL ENHANCEMENT COURSE .SS = SELF STUDY PAPER.INTERDISCIPLINARY COURSE= IDC. OE = OPEN ELECTIVE PAPER

	List A - Soft-Core General Courses								
S. I.No	Semester	Title of the paper	L	Т	Р	Credits			
1	Demoster	Human Physiology	3	0	0	3			
2	st	Clinical Biochemistry & Histochemistry	3	0	0	3			
3	Fir	Biotechnology	3	0	0	3			
4		Pharmacology and Toxicology	3	0	0	3			
		List B- Soft-Core Skill Enhancement C	ourses						
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	t	Waste Management and Bioremediation	2	0	0	2			
2	Firs	Biochemical applications in Forensics	2	0	0	2			
		List C - Soft-Core General Courses							
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	рі	Basics of Herbal Technology	2	0	0	2			
2	COL	Endocrinology	2	0	0	2			
3	Se	Functional Foods and Neutraceuticals	2	0	0	2			
		List D - Soft-Core General Courses							
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
	rd	Plant Biochemistry	2	0	0	2			
	Thi	Ecology & Evolution	2	0	0	2			
		List E - Soft-Core Ability Enhancement Cor	urses						
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
	Ŧ	Methods in Research	2	0	0	2			
	hire	Pathological basis of Diseases	2	0	0	2			
	T	Food processing and Packaging	2	0	0	2			
		List F- Soft-Core Self Study Courses							
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	rd	Introduction to Manuscript Writing And Research Presentation	0	2	0	2			
2	Thi	Advanced Nutrition	0	2	0	2			
3		Literature review and publication	0	2	0	2			
		List G - Soft-Core General Courses							
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	Ч	Plant tissue culture and Grafting	2	0	0	2			
2	ort	Advanced Endocrinology	2	0	0	2			
3	Н	Genomics, Proteomics and Bioinformatics	2	0	0	2			
		List H - Soft-Core Ability Enhancement	Course	es					
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	2 4	Genetics & Developmental Biology	2	0	0	2			
2	ĘĘ	Principles of Chemistry	2	0	0	2			

SEMESTER WISE SOFT- CORE ELECTIVE PAPERS OFFERED TO M. SC BIOCHEMISTRY STUDENTS

3		Fruits and Vegetable preservation	2	0	0	2			
	List I- Soft-Core Skill Enhancement Courses								
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	q	QA, QC and GMP	2	0	0	2			
2	hire	Microbiology	2	0	0	2			
3		Biosafety, Bioethics and IPR	2	0	0	2			

SEMESTER WISE INTERDISCPLINARY COURSES OFFERED TO SISTER DEPARTMENT									
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	рı	Basics of Herbal Technology	2	0	0	2			
2	CON	Biopharmaceuticals-I	2	0	0	2			
3	Se	Clinical Diagnosis in Health and Disease-I	2	0	0	2			
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	ч	Plant tissue culture and Grafting	2	0	0	2			
2	ort	Biopharmaceuticals-II	2	0	0	2			
3	Clinical Diagnosis in Health and Disease-II		2	0	0	2			

SEMESTER WISE OPEN ELECTIVE COURSES OFFERED TO UNRELATED DEPARTMENT									
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	puo:	Biochemistry in Daily Life	2	0	0	2			
2	Sec	Biochemistry of Common Disorders	2	0	0	2			
S. I No	Semester	Title of the paper	L	Т	Р	Credits			
1	ird	Lifestyle Disorders	2	0	0	2			
2	Тћі	Fundamentals of Biochemistry	2	0	0	2			

	CERTIFCATE COURSE OFFERED									
S. I No	Semester	Title of the paper	L	Т	Р	Credits				
1	. //////	Mushroom Cultivation Technology	2	0	2	2				
2	I /II/III/IV	Vermi compost Technology	2	0	2	2				

ST. PHILOMENA'S COLLEGE (AUTONOMOUS) Programme: M.Sc Biochemistry

(For Candidates admitted during the Academic year 2020-21 onwards)

FIRST YEAR - SEMESTER - I

Course Title		TECHNIQUES IN BIOCHEMISTRY								
Course Type	Hard Core- Theory		Total	48	Hours/Week (03	Credits	03	
Course Type			Hours							
Course Code			Internal	C1	C1+C2 = 15+15			3	0 Marks	100
		Evaluation	External	Durati	ration C3		03Hrs	3 7	0 Marks	100

	COURSE OBJECTIVES (COs)								
CO No.	Course Objectives								
CO-1	Understand theoretical and practical knowledge about various techniques								
	used in purification, characterization								
CO-2	Identify and apply the knowledge in estimation of cellular constituents								
CO-3	Develop key skills like practical research required in scientific work								

	MAPPING CLO'S WITH PSO's AND CD's								
CLO No.	Course Learning Outcomes	PSOs	CD's						
	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Use the current biochemical and molecular technique concept to plan and carry out experiments	PSO-2	Apply						
CLO-2	Understand construction, working principle and application of various techniques used in biochemistry with its limitations	PSO-3	Understand						
CLO-3	Understand the usage of live models in research and techniques in extraction of cellular components	PSO-1	Understand						
CLO-4	Generate and analyze data appropriately and appreciate the limitations of conclusions drawn from experimental data independently	PSO-4	Analyze						

Modules

COURSE CONTENTS

Duration

1.0 Models: Animal Models, Choice Of Animals, Types Of Studies Mutant Organisms (Auxotroph), Cultured Animal And Plant Cells As Models.

Cell Fractionation Techniques: Cell Lysis, Homogenization, **4 hours** Extraction, Salting In & Salting Out, Dialysis And Ultra Filtrations

Keywords: live animal and plant models; isolation of cellular component

1.1 Analytical Ultracentrifuge: Construction, Svedberg's Constant, Sedimentation Velocity And Sedimentation Equilibrium, Schleiran Optics

> Preparative: Differential And Density Gradient Centrifugation, 6 hours Elutriation, Construction Centrifugal and applications of Preparative Ultra Centrifuge, Marker Enzymes

Keywords: construction and working principle; identification of cellular components

2.0 Chromatographic Techniques: Principles and Applications of Paper Chromatography, Adsorption Chromatography, TLC, Ion Exchange Chromatography, Gel Filtration Chromatography Affinity 8 hours chromatography, GLC, HPLC, FPLC & Chromatofocusing

Keywords: Construction, working principle and application

2.1 Electrophoretic Techniques : Polyacrylamide Gel Electrophoresis ,SDS-PAGE,2D-Electrophoresis, Agarose Gel Electrophoresis, Isoelectric Focusing, Pulsed Field Electrophoresis, High Voltage Electrophoresis, Capillary Electrophoresis, Separation Of Proteins, 8 hours Lipoproteins And Nucleic Acids

Keywords: Construction, working principle and application

Blotting Techniques: Dot blot, Western, Southern, Northern 2.2 blotting , DNA finger print assay , DNA foot print assay, Gel Nuclease protection assay **Visualizing** retardation assay, Separated Components- Staining: Coomassie Blue, Silver Staining, Ethidium Bromide, PAS Staining, Zymogram And Reverse Zymogram

> Keywords: Construction, working principle, application and identification

3.0 Spectroscopic **Techniques:** Colorimeter: Principle, Molar Extinction coefficient, Beer's law Fluorescent Probes And Their Applications: FRET And FRAP, Sorting of cell- flow cytometry

Keywords: Construction, working principle and application

4.0 Radioactivity: Isotopes and isobars, Heavy Isotopes And Radio Isotopes ,Theory and Construction of Mass Spectrometer Ionization ,Fragmentation, M/E ,Time of Flight, MALDI And ESI ,Quadrupole Analyser

Keywords: Construction, working principle and application

4.1 Radioisotopes In Biology: ³H, ¹⁴C, ³²P, ¹³¹I, ³⁵S. Concept of Half-Life, Decay Constant ,Specific Activity, carrier free isotope

> Detection And Quantification: Geiger Muller Counter, Solid And Liquid Scintillation Counter, Autoradiography, Carbon Dating, Isotope Dilution, Pulse Chase

5 hours

Radio labelling : Lipids-Choline, Fatty Acids, Proteins- I125, Nucleic Acids Using ATP $(y-P^{32})$

Keywords: Construction, working principle and application of isotopes and radioactivity detection.

4 hours

4 hours

4 hours

5.0 Microscopic techniques: Principles and applications of light microscopy, phase contrast microscopy, fluorescence microscopy, confocal microscopy, differential microscopy, electron microscopy, Resolving powers of various microscopes Staining techniques for 5 various microscopes

5 hours

Keywords: Construction, working principle and application

Note: Course content involves 90% Theory and 10% Problems

REFE	RENCES				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	A Guide to principles and techniques of practical biochemistry	K.Wilson & K.Goulding	Cambridge University Press	3	1994
2.	Principles and techniques of practical biochemistry	Bryan L.Williams and Keith Wilson	Cambridge University Press	4	1996
3.	Principles &Techniques of Biochemistry and Molecular Biology	Keith Wilson & John Walker	Cambridge University Press	7	2010
4.	Introductory Practical Biochemistry	S.K. Sawhney &, R. Singh	Alpha Science International Ltd	5	2005
5.	Introduction to spectroscopy	Pavia	Cengage Learning India Private Limited	3	1999

RECOM	IMENDED BOOKS				
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	An Introduction to Practical Biochemistry	David Plummer	Mc Grow Hill education	3	2011
2.	Text book of Biophysical Chemistry	Upadyaya & Upadyaya	Himalaya Publishing House Pvt. Ltd.	4	2016
3.	Instrumental Methods of Analysis	Muralidhara Rao	CBS Publishers & Distributors	1	2013

FIRST YEAR - SEMESTER – I

Course Title		CHEMISTRY OF BIOMOLECULES								
Course Type	Hard Core- Theory		Dre- Theory Total Hours 48 Hours/Week 0		Hours/Week		03	Credits	03	
Course Type							ULK	05	Cicuits	
Course Code		Evolution		C1+C2 = 15+15		+15		30 Marks	100	
Course Code	Evaluatio		External	Dura	ation	C3	03H	lrs	70 Marks	100

	COURSE OBJECTIVES (COs)							
CO No.	Course Objectives							
CO-1	Gain knowledge about various macromolecules present in biological system							
CO-2	Understand structure, linkage and functions of macromolecules							

MAPPING CLO'S WITH PSO's AND CD's										
CLO No.	Course Learning Outcomes	PSOs	CD's							
	On completion of the course the student will	Addressed								
	learn to									
CLO-1	Demonstrate knowledge and understanding of the molecular machinery of living cells and principles that govern the structures of macromolecules	PSO-5	Analyze							
CLO-2	Isolation and characterization of macromolecules	PSO-4	Understand							
CLO-3	Structural elucidation and physiochemical properties of macromolecules	PSO-1	Understand							
CLO-4	Structure-Function relationship analysis	PSO-3	Apply							

Modules

COURSE CONTENTS

1.0 Structure and Classification of Carbohydrates :Monosaccharides :Pentoses Hexoses, Ketoses Disaccharides: Sucrose, Lactose, Maltose ,Trehalose **Polysaccharides**: Starch, Cellulose, Glycogen, Hyaluronic Acid ,Chondroitin Sulphate ,Chitin, Xylan Bacterial Cell Wall Polysaccharides , Blood Group Polysaccharides

5 hours

5 hours

Duration

Chemistry of Deoxyglucose , Amino Sugars Muramic Acid, Neuraminic Acid **Linkages:** Sucrose, Lactose , Maltose, Trehalose ,Glycosides

Keywords: Chemistry of sugars and their biological significance

2.0 Chemical analysis of carbohydrates: Methods of Structural Elucidation Degradation, Graded Acid Hydrolysis, Periodate Oxidation, Degradation of Oxopolysaccharides, Methylation, Acetylation, GC-MS

Glycobiology: N- And O-Linked Glycoproteins, Lectins, **5 hours** Proteoglycans, Agreecan, Syndecan, Decorin, Pectin And Pectic Polysaccharides

Keywords: Chemical structural elucidation of sugars, biological importance of complex sugars

3.0 Amino Acids: Nomenclature, Classification General Reactions of Amino Acids Unusual Amino Acids, Non Protein Amino Acids

Peptide Bond: Features of the Peptide Bond, Naturally Occurring Peptides- Glutathione, Enkaphalins and Endorphins

Chemical Synthesis of Peptides- Khorana's Solution Phase

Synthesis, Merrifield's Solid Phase Synthesis

Keywords: amino acids, classification, peptides, synthesis

3.1 Determination of Amino Acid Compositions: Acid And Base Catalyzed Hydrolysis, Separation, Quantification : Determination of N- And C- Terminal Residues, Determination of Site of **3 hours** Glycosylation and Type of Glycosylation

Keywords: Composition, determination of amino acids

 3.2 Determination of Primary Structure :Sequencing Strategies : N-Terminal And C-Terminal, Sequencing Methods , Automated Sequanators, Determination of S-S-Bond Position
 3 hours

Keywords: sequencing methods

 3.3 Secondary Structure of Protein: α, β Sheet, β Bend, β Turn, Super Secondary Structures. Secondary Structure Prediction Method- Ramachandran Plot : Φ, Ψ Angles, Tertiary And 3 hours Quaternary Structures

Keywords: secondary structures, prediction

3.4 Weak Forces of Interaction: Hydrogen Bonding ,Vander Waal's Forces, London Force, Ionic Interactions , Hydrophobic Interactions ,S-S Bridges, Peptide Bond Glycosidic Bond ,Phosphodiester Bond , Allolysine , Molten Globule, Levinthal Paradox, Denaturation And Renaturation of Proteins, Anfinsen's Experiment

Keywords: Bonding, forces of interaction, renaturation, denaturation

3.5 3D Structures of Myoglobin, Haemoglobin ,Immunoglobulin, Collagen , Keratin

3 hours

Keywords: Chemistry, chemical structural elucidation and biological significance of proteins

4.0 Classification, Occurrence and Properties of lipids: Oils, Fats, And Waxes, Fatty Acids, Esters of Fatty Acids, Cholesterol, Phosopholipids, Glycolipids Sphingolipids, Cerebrosides, Gangliosides.

> **Lipid Mediators:** Structure and major functions of Eicosanoids, **4 hours** Prostaglandins, Leukotrienes, Prostacyclins, Thromboxanes, DAG, Ceramide, PAF

Keywords: Chemistry, chemical structural elucidation and biological significance of lipids

5.0 Chemistry of Nucleic Acids: Isolation & Purification Of DNA And RNA From Biological Sources (Microbes, Plants And Animals) of Nucleic Acids

Physiochemical Properties of Nucleic Acids: Melting of DNA, Tm, Factors Affecting Tm, Cot Curve and Classification of DNA Based on Cot Curve, Chemical Reactions of DNA and RNA.

Keywords: isolation, classification, chemical reactions

5.1 Sequencing of DNA: Maxam Gilbert Method, Dideoxy Method, Pyrosequencing Chargaff's Rule, Secondary Structure Of DNA -Watson And Crick Model, B and Z DNA, Other Models of DNA Structure (A DNA)

4 hours

Secondary Structural Features of DNA: Steam Loop Structure, Palindromic Sequences, Cruciform, Secondary Structure Of t-RNA -Clover Leaf Model *Keywords: Chemistry, chemical structural elucidation and biological significance of nucleic acid*

REFEF	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Lehninger Principles of Biochemistry	David L. Nelson & Michael M. Cox	W.H. Freeman	6	2012
2.	Fundamentals of Biochemistry	J L ₋ Jain , Sunjay Jain , Nitin Jain	S Chand	7	2016
3.	Biochemistry	U. Sathyanarayana & Chakrapani	Elsevier	4	2013
4.	Harpers Illustrated Biochemistry	Robert K. Murray, Peter J. Kennelly, David A. Bender	McGraw-Hill Medical	29	2012

Note: Course content involves 100% Theory

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Biochemistry	U. Sathyanarayana & Chakrapani	Elsevier	5	2017
2.	Textbook of Biochemistry for Medical Students	DM Vasudevan Sreekumari SKannan Vaidyanathan	Jaypee Brothers Medical Publishers	6	2011
3.	Color Atlas of Biochemistry	Jan Koolman	Thieme	3	2013

Course Title		CELL & MENBRANE BIOLOGY										
Course Type	Hard C	ore Theory	Total	48	Hours/Week		8 Hours/Week 03 Cred		Credits	03		
Course Type	Hard Core- Theory		Hours									
Course Code		Evolution	Internal	ernal C1+C2 = 15-		+15		30 Marks	100			
		Evaluation	External	Durati	Duration C3 03		03H	lrs	70 Marks	100		

FIRST YEAR - SEMESTER – I

COURSE OBJECTIVES (COs)								
CO No.	Course Objectives							
CO-1	Study structure and functions of bio membranes, structure-function relationships,							
	membrane biogenesis							
CO-2	Demonstrate knowledge on membrane associated cellular events							

	MAPPING CLO'S WITH PSO's AND CD's									
CLO No.	Course Learning Outcomes On completion of the course the student will learn to	PSOs Addressed	CD's							
CLO-1	Appreciate the Evolution In Concept Of Membrane Models	PSO-3	Analyze							
CLO-2	Understand intracellular targeting of molecules and biogenesis of sub-cellular organelles	PSO-2	Understand							
CLO-3	Understand the techniques used to study membrane structures	PSO-1	Apply							
CLO-4	Understand the mechanism underlying neurotransmission, muscle contraction and cell cycle	PSO-4	Understand							

Modules

COURSE CONTENTS

Biomembranes: Evolution In Concept Of Membrane Models, Earlier models, Gorter And Grendel's Experiment, Danielle - Davson Model Of Membrane, Singer And Nicholson's Model, Supra Molecular 8 h Organization Models of Membrane Newer Models,

8 hours

Keywords: Membrane Models, molecular organization Models

 1.1 Physicochemical Properties Of Biological Membranes, Compositions-Lipids, Proteins And Carbohydrates, Lipid Phases-Hexagonal I And II, Micellar Phase, Bilayer Phase, Phase Transition Temperature, Membrane asymmetry and its significance, Polarized Cells, Membrane Domains: Caveolae, Rafts, Membrane Protein Turnover, Ubiquitin pathway, Intracellular Targeting Of Proteins Biogenesis Of Sub Cellular Organelles –peroxisomes, lysosomes

Keywords: Properties Of Membranes, models of membrane structure, membrane asymmetry

2.0 Methods of Study of Membrane Structure: Liposome Preparations And Application, Freeze Fracture, Freeze Etching, FRET, FRAP, Single Particle Tracking

Keywords: Principle and application of methods used in analyzing membrane structure

2.1 Membrane Transport: Laws of Diffusion Across Membranes, Simple Diffusion and Facilitated Diffusion, Active Transport, Glucose Transporters, Na⁺-K⁺ATpase (Structure And Mechanism of Action) Bacterial Phosphotransferase System, Receptor Mediated Endocytosis, exocytosis, Membrane flow hypothesis

Ion Channels: Gated Ion Channels-Ligand and Voltage, Non- Gated Ion Channels Aquaporin Channel, Ionophores

.

4 hours

8 hours

Duration

Keywords: Transporters, carriers, channels, mode of membrane transport

 3.0 Mechanisms Of Nerve Conduction, Resting And Action Potential, Presynaptic And Postsynaptic Membranes, Acetylcholine Receptor And Neurotransmission, Patch Clamp Technique, Nicotinic And Muscarinic 8 hours Neurons, GABA, NMDA - Structure And Function

Keywords: Structure and mechanism of neuronal signals

 4.0 Muscle Contraction: Structure Of Skeletal Muscle, Mechanisms Of Muscle Contraction, Role Of Calcium, Calmodulin, Phospholamban
 4 hours

Keywords: Molecular mechanisms in muscles

 5.0 Cell Cycle and its Regulation: Phases Of The Cell Cycle, Check Points, Cdks and Cyclins, Cell Cycle Control, Aging and senescence Apoptosis
 8 hours

Keywords: Molecular events of a cell, pathways of apoptosis

REFERE	NCES				
Sl.No	Title of the bookName of the authorName of the publisher				Year of publication
1.	Biochemistry	Geoffrey Zubay	WBC Publishers	4	1998
2.	Lehninger Principles of Biochemistry	David L. Nelson And Michael M. Cox	W.H. Freeman & Company	4	2004
3.	Harper's Biochemistry	Robert K. Murray, Daryl K. Grammer, Peter A. Mayer, Victor W. Rodwell	Appleton & Lange	27	2006
4.	Fundamentals Of Biochemistry, Life At The Molecular Level.	Donald Voet, Judith G. Voet, Charlotte W. Pratt	Wiley	2	2006

Note: Course content involves 100% Theory

RECOM	MENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Fundamentals Of Biochemistry, Life At The Molecular Level.	Donald Voet, Judith G. Voet, Charlotte W. Pratt	Wiley	4	2012
2.	Outlines Of Biochemistry	Eric E. Conn, P.K. Stumpf, G Bruening, R.H. Doi	Wiley	5	2006
3.	Color Atlas of Biochemistry	Jan Koolman	Thieme	3	2013

FIRST YEAR - SEMESTER - I

Course Title	BIOMOLECULES, TECHNIQUES & CELL B						ELL BIC	DLOG	Ϋ́Υ	
Course Type	Hard Core-Practical		Total Hours	48	Hours/Week			06	Credits	03
Course Code		Evoluction	Internal	C1	+C2	2 = 15	+15	3	0 Marks	100
		Evaluation	External	Durati	on	C3	03Hrs	7	0 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	Basic skills in the biochemistry lab.						
CO-2	Accurate use of pipettes, making solutions for enzyme	e and biochem	ical study.				
CO-3	The estimation of Reducing sugar, protein, amino a	cids by differe	nt methods				
CO-4	The isolation and detection of various Biomolecules by different chromatographic techniques.						
CO-5	CO-5 lysis, electrophoresis and cholinesterase activity detection in erythrocytes						
MAPPING CLO'S WITH PSO's AND CD's							
CLO No.	Course Learning Outcomes On completion of the course the student will learn to	PSOs Addressed	CD's				
CLO-1	Gain technical experience and handle adjustable micro pipettes in a reproducible manner	PSO- 1	Understand				
CLO-2	Demonstrate the use of advance microscope.	PSO- 2	Remember				
CLO-3	Plan experiments, write protocols	PSO -2	Understand				
CLO-4	Perform logical reasoning and criticizing data	PSO -3	Remember				
CLO-5	Understand and interpretation experimental results	PSO- 4	Analyse				

Modules	COURSE CONTENTS	Duration
1.0	Biomolecules	
1.1	Determination of Protein - Lowry, Biuret methods	4hours
1.2	Determination of Reducing sugar-DNS method	4hours
1.3	Determination of Amino acids	4hours
2.0	Techniques	
2.1	Paper chromatography- Circular , Ascending(amino acids) descending (sugars)	4hours
2.2	Isolation of lipids from egg yolk- TLC of Lipids	4hours
2.3	Gel filtration-purification of cytochrome C	4hours
2.4	Ion Exchange chromatography	4hours
2.5	Molar Extinction coefficient	4hours
3.0	Cell Biology	
3.1	Erythrocyte lysis profile in sodium chloride solution	4hours
3.2	Erythrocyte cholinesterase activity and inhibition by pesticide residues	4hours

- **3.3** Erythrocyte membrane protein electrophoresis- SDS, PAGE molecular weight calculation
- **3.4** Glucose uptake in Yeast cells. Kinetics of uptake

Note: Course content involves 100% Practicals

REFEF	REFERENCES							
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II	2014			
2.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010			

RECOMM	IENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education	2	2011

LIST A- SOFT-CORE GENERAL COURSES

- 1. Human Physiology
- 2. Clinical Biochemistry
- 3. Biotechnology
- 4. Pharmacology and Toxicology

FIRST YEAR - SEMESTER - I

Course Title		HUMAN PHYSIOLOGY								
Course Type	Soft Core- Theory		Total Hours	48	Hours/Week		03	Credits	03	
Course Code		Evolution	Internal	C	1+C2	2 = 15	+15		30 Marks	100
Course Code		Evaluation	External	Dura	tion	C3	03H	rs	70 Marks	100

COURSE OBJECTIVES (COs)				
CO No.	Course Objectives			
CO-1	Gain knowledge regarding biochemistry of various physiological processes specialized tissues and hormone action in animal system			
CO-2	Understand structure, operational mechanism and functions of the various organs and organ system in human body			
CO-3	Discuss on some of the more important organ related pathophysiological conditions			

MAPPING CLO'S WITH PSO's AND CD's					
CLO No.	Course Learning Outcomes	PSOs	CD's		
	On completion of the course the student will	Addressed			

4hours

	learn to		
CLO-1	Understand the Digestive and Excretory system	PSO- 1	Remember
	Physiology.		
CLO-2	Understand the Circulatory, Respiratory system	PSO- 2	Understand
CLO-3	Understand the Muscular and Nervous system.	PSO -2	Understand
CLO-4	Analyse the functions of reproductive system and their mechanisms	PSO- 4	Analyse

Modules

COURSE CONTENTS

Duration

2hours

- 1.0 Introduction to physiology Basic Body Plan In Humans Location of organs Keywords: Human organs
- 1.1 **Circulatory Physiology**: Composition, types, Structure and Plasma Erythrocytes, WBC: Differential Count. Functions of Platelets. Plasma Lipoproteins And Their Formation and functions-HDL, LDL, VLDL, Chylomicrons , Buffer Systems, Hemostasis Blood brain barrier, Chemical composition, Formation and 10hours Functions of CSF, Lymph, Extracellular Fluid, Interstitial fluid, Transcellular Fluid, Intracellular Fluid Blood Clotting Classical And Alternate Pathway Digestion of Clot, Anticoagulants, and blood groups. Keywords: Human organs, blood , clotting , body fluids 2.0 Cardiovascular & Respiratory physiology: Anatomy of Heart, myogenic heart, ECG – Its Principle and significance. Cardiac cycle, Heart As A Pump. Blood Volume And Blood Pressure- Neural And **Chemical Regulation** 8hours Structure And Functions of Lungs, Gas Exchange, Oxygen Binding By Haemoglobin, Factors Affecting Oxygenation, Role of lung in acid-base balance Keywords: Circulatory system, Respiratory mechanics, heart 3.0 Renal & Hepatobiliary system: Ultra Structure Of The Nephron, Glomerular Filtration, Urine- composition and formation, Role of Kidney in Acid - Base Balance 8hours Anatomy of The Liver Hepatocytes, Endothelial Cells And Kupffer Cells, Secretory, Excretory Functions And Formation Of Bile Keywords: Nephron, Excretory function 4.0 Digestive System: GI Tract, Digestion And Absorption of Carbohydrates, Proteins, Lipids. Mechanism of HCl Production in
 - the Stomach , Gastrointestinal Hormones Role of Pancreas in Digestion

Keywords: Breakdown, absorption of food. hormonal regulation

5.0 Nerve and Muscle Physiology: Gross Anatomy of Brain, Central and Peripheral Nervous System, Structure and types of Neurons. Resting and action potential- conduction of nerve impulse. Synaptic transmission. Neurotransmitters. Neuromuscular 8hours Junctions

Muscular system Structure of Skeletal Muscle And Smooth Muscle. Muscle Proteins: Actin, Myosin, Tropomyosine, Troponins

6hours

Theories and Mechanism of muscle contraction. Role of ATP and Calcium in muscle contraction.

Key words: Effectors, Muscle Proteins, Gray matter, Acetylcholine

6.0 Reproductive Physiology: Physiology of ovulation; mechanisms for single births; impacts of multiple births; control of fertility: contraception and fertility therapy, factors influences on the ovulatory cycle. Induced Abortion; Infertility, IVF, STDs, *Key words:* ovulation, fertility therapy

Note: Course content involves 100% theory

REFE	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Varley's Practical Clinical Biochemistry	Alan H .Gowenhock	CBS publishers.	6	2014
2.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3	2014
3.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010

RECO	MMENDED BOOKS				
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education Private Limited, New Delhi	2 Volume 1, 2 and 3.	2011

FIRST YEAR - SEMESTER - I

Course Title		CLINICAL BIOCHEMISTRY								
Course Type	Soft Core- Theory		Total Hours	48	Hours/Week		03	Credits	03	
Course Code	Dada Evaluation		Internal	C	C1+C2 = 15+15			30 Marks	100	
Course Code		Evaluation	External	Durat	tion	C3	03H1	rs	70 Marks	100

	COURSE OBJECTIVES (COs)				
CO No.	Course Objectives				
CO-1	Remember the historical background for Clinical Biochemistry and understand the basic elements of core biochemistry and specialized test in carbohydrates				
CO-2	Analyze the lipid, protein and nucleic acid Metabolism abnormalities.				
CO-3	Understand and identify the main test functions				
CO-4	Understand the renal function test in clinical biochemistry.				
CO-5	Evaluate the scientific explanations cancer and evaluate the role of biomarkers in disease diagnosis.				

MAPPING CLO'S WITH PSO's AND CD's									
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Discuss the biochemistry and pathophysiology associated with tests performed in a clinical biochemistry laboratory	PSO -1	Understand						
CLO-2	Compare and contrast the basic differences between carbohydrate, lipid and protein metabolism abnormalities.	PSO- 2	Remember						
CLO-3	Describe and identify the main characteristics of diagnosis, screening, and prognosis of disease.	PSO- 2	Understand						
CLO-4	Critically evaluate the role of clinical biochemistry in diagnosis, monitoring and treatment.	PSO -3	Remember						
CLO-5	Applications of biochemistry on health, medical diagnostics and pharmacy.	PSO -4	Apply						

Modules

COURSE CONTENTS

Duration

1.0	Basic Concepts : Health And Disease, Normal And Pathological Changes Affecting Cells In The Body, Cell Death and the Physiological Causes Physical, Chemical, Biological Agents And	4Hours
	Nutritional Deficiency	
1.2	Diagnostic Enzymology: Mechanisms of Elevated Enzyme Activities, Serum enzymes and isoenzymes in health and disease – Transaminases (AST, ALT) acid & alkaline phosphatases, amylase, LDH and CK. <i>keywords: clinically important enzymes</i>	4Hours
2.0	Disorders of carbohydrate metabolism: Blood sugar	
	 homeostasis: Role of tissues and hormones in the maintenance of blood sugar. Hypoglycemia, hyperglycemia, glycosuria. Diabetes mellitus – classification, metabolic abnormalities, diagnosis and management. Laboratory Investigations: GTT, HbA1c , Complications and Advanced Glycation End Products In Born Errors of Carbohydrate Metabolism glycogen storage diseases, galactosemia, fructose intolerance and fructosuria. Key words: Disorder inborn errors of carbohydrate metabolism 	8hours
2.1	 Disorders of lipid metabolism – HDL And Reverse Cholesterol Transport. Lipoproteinemias, Lipid storage diseases – Gaucher's, Tay Sach's Niemann Pick disease. Fatty liver. Atherosclerosis- Oxidation Hypothesis , Response to injury Hypothesis, Inflammation as a cause , Risk Factors and Pathogenesis , Diagnosis And Prognosis Key words: Disorder of lipid metabolism, cardiovascular disease 	6hours
3.0	Disorders of amino acid and nucleic acid metabolism	
	Disorders of amino acid metabolism–Phenylketonuria, alkaptonuria, albinism, cystinuria and maple syrup urine disease. Disorders of purine, pyrimidine metabolism: Hyperuricemia and gout. Hypouricemia. Orotic aciduria. Serology: C reactive protein	6hours

Key words: Disorders of amino acid and nucleic acid metabolism

test, Rheumatoid arthritis (RA) test.

Liver function test and gastric function test Jaundice- Causes, consequences, biochemical findings, treatment in jaundice, hepatitis and cirrhosis. Liver function test. Tests related to excretory (bile pigments) synthetic (prothrombin time) detoxifying (hippuric acid) and metabolic (galactose) functions. Gall stones. Gastric function tests- Stimulation tests – insulin and pentagastrin. fractional Gastric Analysis , Hypo And Hyper Acidity Malabsorption Syndrome , Steatorrhea , Diarrhoea , Peptic ulcer, gastritis and Zollinger Ellison syndrome.

4.0

6hours

Key words: Important Liver function test and gastric function test

5.0 Renal function test and metabolic disorders: Kidney function-Biochemical findings in glomerulonephritis, renal failure and nephritic syndrome. Nephrolithiasis. Kidney function tests -Glomerular function tests – inulin, urea and creatinine clearance tests, renal plasma flow, plasma microglobulin. Tubular function tests – water load, concentration and acid excretion tests. Abnormal constituents of urine.

8hours

Key words: Important renal function test , Abnormal constituents of urine

6.0 Laboratory Diagnosis To Assess the function of endocrine system:

Function and disorders of Pituitary, Thyroid & Adrenals gland: **6hours** Graves Disease , Hashimoto Disease ,Addission's Disease , Acromegaly & Gigantism

REFE	REFERENCES										
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication						
1	Clinical Chemistry in diagnosis and treatment,	Philip. D. Maine & Edward Arnold, 6th ed ELBS.	Bhalani Publishing house	6	2015						
2	Varley's Practical Clinical Biochemistry	Alan H .Gowenhock	CBS publishers.	6	2014						
3	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3	2014						
4	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010						

Note: Course content involves 100% theory

RECO	RECOMMENDED BOOKS									
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication					
1.	Clinical Biochemistry-, an Illustrated Colour Text	Allan GAW Michael J	Tata McGraw Hill Education Private Limited, New Delhi	5	2013					

FIRST YEAR - SEMESTER - I

Course Title	BIOTECHNOLOGY									
Course Type	Soft Core- Theory		Total Hours	48	Hours/Week 0		03	Credits	03	
Course Code		Evolution	Internal	C	$1+C_2$	2 = 15	+15		30 Marks	100
Course Coue	Evaluation		External	Dura	tion	C3	03H	rs	70 Marks	100

COURSE OBJECTIVES (COs)									
CO No.	O No. Course Objectives								
CO-1	Understand the difference between old biotechnolog	gy and modern	i biotechnology.						
CO-2	P-2 Provide examples of current applications of biotechnology and advances in the different areas like medical, microbial, environmental, bioremediation, agricultural, plant, animal, and forensic.								
CO-3	Explain the concept and application of cell lines								
CO-4	Provide examples on how to use microbes an production of pharmaceutical products.	d mammaliar	n cells for the						
CO-5	commercial production & application of Cell lines in	n treating diso	rders						
	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Compare & Contrast between old biotechnology and modern biotechnology	PSO -1	Understand						
CLO-2	Apply the knowledge of biotechnology and advances in the different areas like medical, microbial, environmental, bioremediation, agricultural, plant, animal, and forensic	PSO- 2	Apply						
CLO-3	understand the concept and application of cell lines	PSO- 3	Understand						
CLO-4	Critically evaluate the role of microbes and mammalian cells for the production of pharmaceutical products.	PSO -5	Evaluate						
CLO-5	Describe and identify the production & main characteristics of Cell lines in treating disorders	PSO -4	Remember						

Modules

COURSE CONTENTS

Duration

12hours

1.0 Cell culture techniques: Introduction to plant and animal tissue/cell culture Laboratory design aseptic conditions equipments and materials for cell culture. Different constituents of culture medium - types of media and their applications

Animal cell culture: Animal Cell Culture: Historical Background, Importance and progress in Animal Cell Culture Technology, Biology of Animal Cell; Laboratory setup and equipments, aseptic technique, different cell culture media and supplements, Importance of Serum and Serum Free Media, preparation and sterilization of cell culture media and supplements. Preparation of primary culture, disaggregation of tissue and primary cultures chick embryo, HUVEC, characterization of cultures ,Ploidy, cell doubling time, Cell surface markers

Keywords: Cell culture, Markers, media and supplements

2.0 Cell lines: Characteristics and routine maintenance cell separation techniques Measurement of viability and cytotoxicity Scaling-up of animal cell culture bioreactors used in animal cell 12hours culture, amplified cultures, continuous cultures and their applications

Keywords: Cell lines, viability, application

3.0 Fermenters: stirred fermenter, Microcarrier, Encapsulation, hollow fiber chambers, packed Cell, immobilization techniques, glass bead reactors, Organ and histotypic cultures, threedimensional culture ,tissue engineering eg skin Characterization 12hours Cell synchronization of the cultured cells measuring parameters of growth Somatic cell fusion cell cloning cryopreservation

Keywords: Fermenters, tissue engineering

4.0 **Applications** :Commercial scale production of animal cells, stem cells &their application; Over view of embryonic and adult stem cells for therapy; Neuro degenerative disease; Parkinsons, Alzheimer, Spinal cord injuries and other brain syndromes; Tissue 12hours system failures; Diabetes; Cardiomyopathy; Kideney failure; Liver failure, Cancer, Hemophilia, Application of cell culture technology in production of human and animal vaccines and pharmaceutical proteins. Keywords: Commercial Production & Applications

REFEF	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Biotechnology	U Satyanarayana	Books & Allied Ltd	1	2008
2.	A Textbook of Biotechnology	R C Dubey	S Chand	5	2014
3.	Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications	R. Ian Freshney	Wiley- Blackwell	6	2010
4.	Animal Cell Culture: Essential Methods	John M Ed Davis	John Wiley & Sons	1	2010

Note: Course content involves 100% theory

RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Introduction to Plant Cell, Tissue and Organ Culture	Sunil D. Purohit	PHI Learning	1	2013			
2.	Practical Book of Biotechnology & Plant Tissue Culture	Madhavi Adhav & Nagar Santosh	S Chand & Co Ltd	1	2010			

FIRST YEAR - SEMESTER - I

Course Title	PHARMACOLOGY AND TOXICOLOGY									
Course Type	Soft Core- Theory		Total Hours	48	Hours/Week 0		03	Credits	03	
Course Code		Evolution	Internal	C	1+C2	2 = 15	+15		30 Marks	100
Course Code	Evaluation		External	Durat	tion	C3	03H	rs	70 Marks	100

COURSE OBJECTIVES (COs)CO No.Course ObjectivesCO-1Remember the detailed study of drugs, particularly their actions on living systemsCO-2Analyze the pharmacokinetics and Pharmacodynamics of drugs .CO-3Understand and identify the chemotherapeutic value of drugCO-4Understand the adverse effects of drug action.CO-5Evaluate the effect of clinical toxicology

	MAPPING CLO'S WITH PSO's AND CD's									
CLO	Course Learning Outcomes	PSOs	CD's							
No.	On completion of the course the student will	Addressed								
	learn to									
CLO-1	Discuss detailed study of drugs, particularly their actions on living systems	PSO -1	Understand							
CLO-2	Compare the pharmacokinetics & pharmacodynamics of drugs	PSO- 2	Remember							
CLO-3	Describe and identify the chemotherapeutic value of drug	PSO- 2	Understand							
CLO-4	Describe the adverse effects of drug action.	PSO -3	Remember							
CLO-5	discuss the effect of clinical toxicology	PSO -4	Apply							

Modules

COURSE CONTENTS

1.0 General Pharmacology: Introduction to pharmacology, sources of drugs, Classification of drugs based on sources, dosage forms, route of administration, site of action of drugs. Mechanism of action, concept of receptors, combined effect of drugs, factors modifying drug action. Dose response curve- ED50 and LD50.

Keywords: Pharmacology, Dose response curve

2.0 Pharmacokinetics: Absorption and distribution of drugs, importance of drug – protein interaction. Drug metabolism: chemical pathway of drug metabolism, phase I and phase II reactions, role of cytochrome P450, non- microsomal reactions of drug metabolism, drug metabolizing enzymes. Drug elimination of liver and kidney.

Keywords: Drug metabolism

3.0 Therapeutics: Biochemical mode of action of antibiotics-penicillin and chloramphenicol, actions of alkaloids, antiviral and antimalarial substances. Biochemical mechanism of drug resistance- sulphonamides. Drug potency and drug efficacy. General principles of chemotherapy: chemotherapy of parasitic infections, fungal infections, viral diseases. Introduction to

Duration

10hours

10hours

immuno-modulators and chemotherapy of cancer.

Keywords: Therapeutics, chemotherapy

4.0 Screening for pharmacological activity: Analgesic, antiinflammatory and antipyretic agents, gastrointestinal drugs, antiulcer and laxatives, antioxidants, anticancer and anti-fertility agents. Drugs for metabolic disorders like antidiabetic, antihyperlipidemic, anti-obesity and hepatoprotective agents.

8hours

Keywords: Drugs as analgesics, hepatoprotective

5.0 Clinical Toxicology: Definition, classification of toxicity – occupational, environmental and pharmaceutical. Types of toxins and their mechanism of action. Factors affecting toxicity- Drug tolerance, intolerance, addiction, allergy, hypersensitivity, antagonism and synergism. Methods of detection. Drug abuses and their biological effects. Rational prescription of drugs. Toxicity of anticancer drugs. Clinical symptoms of toxicity and marker parameters.

Keywords: Toxins, tolerance, intolerance

Note: Course content involves 100% theory

REFERENCES										
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication					
1	Principles of pharmacology: the pathophysiologic basis of drug therapy	Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds	Lippincott Williams & Wilkins,	1	2011					
2	Essentials of Pharmacotherapeutics	F S K Barar	S. Chand Limited	1	2000					
3	pharmaceutical chemistry	J. Lippincot co	McGraw Hill Professional, Philadelphia	2	1999					
4	Screening methods in pharmacology	Robert A Turner	academic press, Newyork	1	2001					

RECO	RECOMMENDED BOOKS										
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication						
1.	The pharmacological basis of therapeutics	Goodman & Gilman	Pentagon press	1	2012						
2.	Basic and Clinical Pharmacology	Bertram Katzung, Anthony Trevor	McGraw Hill Professional	1	2014						

LIST B- SOFT-CORE SKILL ENHANCEMENT COURSES

- 1. Waste Management and Bioremediation
- 2. Biochemical Applications in Forensics

FIRST YEAR - SEMESTER – I												
Course Title		WASTE MANAGEMENT AND BIOREMEDIATION										
Course Type	Soft Core- Skill		Total	30	30 Hours/Week		ure /Weelr		Credita	02		
	Enhancement		Hours	30			CCK	04	Cieuns	02		
Course Code	Errolano tina		Internal	C	C1+C2 = 15+15		5 30 Marks		100			
Course Code	Evaluation	External	Dura	tion C3		C3 03Hr		70 Marks	100			

COURSE OBJECTIVES (COs)									
CO No.	Course Objectives								
CO-1	Understand and apply the types of waste and pollution								
CO-2	Understand source, types, disposal principles and Municipal Solid wastes								
	management								
CO-3	Understand and apply the various Hazardous Waste Management								
CO-4	Understand the E-wastes Environmental impacts.								
CO-5	Apply the principles behind Bio composting techniques.								

	MAPPING CLO'S WITH PSO's AND CD's										
CLO	Course Learning Outcomes	PSOs	CD's								
No.	On completion of the course the student will	Addressed									
	learn to										
CLO-1	Critically evaluate the Wastes collection, storage, segregation and disposal methods	PSO- 1	Remember								
CLO-2	Understand the recovery of recyclable and non-recyclable wastes	PSO- 2	Understand								
CLO-3	assess the Hazardous Waste Management	PSO-2	Remember								
CLO-4	know the Sources, Facts and figures of plastic wastes in national and international level	PSO -3	Remember								
CLO-5	Define Remediation of Pollutants	PSO- 4	Apply								

Modules

COURSE CONTENTS

Duration

8hours

- 1.0 Introduction to waste and pollution : Wastes Introduction, sources, collection, characteristics, composition, types of wastes Global scenario of wastes wastes generation per capita Wastes collection, storage, segregation disposal methods sanitary land fillings. key words: waste recycling methods
- 2.0 Municipal Solid wastes management :MSW Sources, types, collection, transportation and disposal – Waste segregation, resource recovery, recovery of recyclable and non-recyclable wastes – reuse and recycling of MSW – Disposal – Incineration, pyrolysis, composing, aerobic and anaerobic digestion. Biomedical wastes – source, types, disposal principles

key words: Use of solid waste as manure

3.0 Plastic and E-wastes :Plastic wastes - Sources, Facts and figures of plastic wastes in national and international level, environmental effects and control measures – E-wastes – sources, types, recovery, reuse – E-wastes pollutant chemicals - E-wastes Environmental

impacts. key words: deterioration of e- waste

Remediation of Pollutants: Bioremediation - Description - Biostimulation, Gaseous nutrient stimulation organic liquid stimulation - Bio-augmentation - Limitations and Concerns - 6h Biofertilizer technology - Bio composting techniques. *key words: Biofertilizers from waste*

6hours

Note: Course content involves 100% theory

DEEDENGEG
REFERENCES

	CENCED				
S1.No	Title of the book	Name of the bookName of the authorName of the publisher			
1	Waste Management and Bioremediation.	Choudharay DK	Oxford Book Company	6	2012
2	Solid Waste Management – Present and Future Challenges.	Singh J and Ramanathan AL	I.K. International Publishing House. Pvt. Ltd.	5	2010
3	Solid Waste Management	Subash Anand	Mittal Publication, New Delhi	4	2010

RECOMMENDED BOOKS										
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication					
1.	E-waste implications, regulations & Management in India and Current global best	Rakesh Johri	TERI Press, New Delhi	1	2008					

FIRST YEAR - SEMESTER – I

Course Title		BIOCHEMICAL APPLICATIONS IN FORENSICS									
Course Type	Soft Core- Skill		Total	20	30 Hours/We		Hours /Wools		Cradita	02	
	Enhancement		Hours	30			CCK	02	Creans		
Course Code	e Code Evaluation		Internal	C	C1+C2 = 15+15			30 Marks	100		
Course Code			External	Dura	tion	C3	03H	rs 7	70 Marks	100	

	COURSE OBJECTIVES (COs)									
CO No.	Course Objectives									
CO-1	Learn the fundamental concepts and principles of forensic science and their significance									
CO-2	Understand how a forensic investigation is initiated through preservation of evidences, as well as chemical, physical and biological methods of their analysis including analysis of DNA and other bodily fluids									
CO-3	Learn to establish identity of an individual by document evaluation, fingerprints, footprints, DNA analysis etc									
CO-4	Obtain hands-on-experience in some of the basic biochemical processes involved in forensic investigation.									

	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Understand the fundamental concepts and principles of forensic science and their significance	PSO- 1	Remember						
CLO-2	understand how a forensic investigation is initiated through preservation of evidences, as well as chemical, physical and biological methods of their analysis including analysis of DNA and other bodily fluids	PSO- 2	Understand						
CLO-3	critically evaluate to identity of an individual by document evaluation, fingerprints, footprints, DNA analysis etc	PSO- 5	Evaluate						
CLO-4	Apply hands-on-experience in some of the basic biochemical processes involved in forensic investigation.	PSO- 3	Apply						
CLO-5	Understand the fundamental concepts and principles of forensic science and their significance	PSO- 4	Understand						

Modules

COURSE CONTENTS

Duration

3hours

1.0 Forensic Science: Definition of Forensic Science, Role of the Forensic Laboratory, History and Development of Forensic Science in India, Branches of Forensic Science. Administration

and Organizational Setup: Brief introduction to DFSS, CFSL, GEQD, SFSL, RFSL, MFSL, FPB, NICFS, CDTS, NCRB and BPR&D. Educational qualifications and employment in Forensic Science Laboratory.

keywords: Role of the Forensic Laboratory

2.0 Forensic Evidences: Types of cases and evidences involved. Laws and Principles of Forensic Science: Law of Exchange (Locard), Law of Individuality, Law of Comparison, Law of Progressive Changes and Law of Probability.

keywords: cases and evidences

 Biological Evidence: Nature and importance of biological evidence. Significance of hair evidence. Transfer, persistence and recovery of hair evidence. Structure of human hair. Comparison of hair samples. Morphology and biochemistry of human hair. Comparison of human and animal hair. Types and identification of microbial organisms of forensic significance. Identification of wood, leaves, pollens and juices as botanical evidence. Diatoms and their forensic significance

keywords: biological evidence

2.2 Wildlife Forensics: Fundamentals of wildlife forensic. Significance of wildlife forensic. Protected and endangered species of animals and plants. Illegal trading in wildlife items, such as skin, fur, bone, horn, teeth, flowers and plants. Identification of physical evidence pertaining to wildlife forensics. Identification of pug marks of various animals

keywords: Fundamentals of wildlife forensic

2.3 Forensic Entomology: Basics of forensic entomology. Insects of forensic importance. Collection of entomological evidence during death investigations.

keywords: forensic entomology

3.0 Criminalistics: Definition, Securing & Searching methods,

Documentation of crime scene. Methods of collection of forensic evidences, Role of Police at the Crime scene, scientific help at crime scene, handling of various types of crime scenes by police. **4hours**

keywords: Crime scene

4.0 Basics of signature and handwriting comparison, fake currency note examination. Classification of Fingerprint patterns, cases involved methods of development and comparison of fingerprints. Forensic expert, Admissibility of Forensic testimony in Court of

4hours

law, Frye and Daubert standards, Cross Examination, Ethics in Forensic Science. Accreditation of Forensic laboratories by NABL.

keywords: signature and handwriting comparison

Note: Course content involves 100% theory

REFEF	RENCES				
Sl.No	Title of the book	Name of the author	Name of the authorName of the publisher		Year of publication
1	Encyclopaedia of Forensic Sciences	J A Siegel, P.J Saukko	Acad. Press	Vol. I, II and III	2000
2	Criminalistics	Saferstein	Prentice Hall Inc., USA	1	1976
3	Forensic Science in Criminal Investigation and Trials	Sharma, B.R	Central Law Agency, Allahabad	2	1974
4	Biochemistry	L. Stryer	W.H. Freeman and Company, New York	3	1988
5	Harper's Biochemistry	R.K. Murray, D.K. Granner, P.A. Mayes and V.W. Rodwell	APPLETON & Lange, Norwalk	3	1993

4hours

3hours

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Forensic Science: An introduction to scientific and investigative techniques	James, S.H and Nordby, J.J	CRC Press	1	2003
2	Forensic Biology	S. Chowdhuri	BPRD, New Delhi	1	1971
3	Serology and DNA typing in, Introduction to Forensic Sciences	G.T. Duncan and M.I. Tracey	.G. Eckert (Ed.), CRC Press, Boca Raton	2	1997

FIRST YEAR - SEMESTER - II

Course Title		ENZYMOLOGY									
Course Trees	Uand	Hand Oans Mhaam		48	Hours/Week 03		03	Credits	03		
Course Type	Hard Core-Theory		Hours								
0 0 1		Evolution	Internal		C1+C	2 = 1	5+15		30 Marks	100	
Course Code		Evaluation	External	Dura	ation	C3	031	Hrs	70 Marks	100	

COURSE OBJECTIVES (COs)								
CO No.	O No. Course Objectives							
CO-1	Understand the Thermodynamic terms and basic conc	Understand the Thermodynamic terms and basic concepts.						
CO-2	Understand the classification, structure, properties an	nd functions o	f enzymes.					
CO-3	Understand the mechanism of action of enzymes and a Catalysis.	analyse the d	ifferent types of					
CO-4	Understand and apply the kinetic studies in the derivative their modification and understand different types of in	ation of the M hibition.	.M equation and					
CO-5	Apply and evaluate the role of enzymes in different areas like industries, clinical labs etc.							
	MAPPING CLO'S WITH PSO's AND C	D's						
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Remember and understand the major classes of enzyme and their functions in the cell.	PSO- 1	Understand					
CLO-2	Explain the role of co-enzyme cofactor in enzyme catalyzed reaction.	PSO- 2	Remember					
CLO-3	Differentiate between equilibrium and steady state kinetics and analyzed simple kinetic data and estimate important parameter (Km. Vmax, Kcatetc).	PSO- 2	Remember					
CLO-4	Define and describe the properties of enzymes in and regulates biochemical pathway (inhibition)	PSO- 3	Remember					
CLO-5	Explain the role of enzymes in different fields.	PSO- 4	Analyse					

	Purification And Characterization Of Enzymes. Criteria Of Purity Of Enzymes, Fold Purity. Nomenclature And IUB Classification Of Enzymes. Enzyme Specificity, Specific Activity, Assay Methods; Coupled Enzyme Assays, Continuous, End Point And Kinetic Assay. Units Of Enzyme Activity, IU And Katal.	7hours
	Key words: Katal ,rpm, Centrifugation, Prosthetic group	
2.0	Enzyme Kinetics: Michaelis-Menten Equation, Initial Velocity Approach, Steady State Approach. Vmax, Km And Their Significance. Linear Transformation Of Michaelis-Menten Equation; Line weaver- Burk Plot, Eadie-Hofstee, Wolf And Cornish-Bowden. Scatchard Plot. Rate Of A Reaction, Order And Molecularity. I Order Reaction Kinetics. Rectangular Hyperbola, Michaelis-Menten Equation As Rectangular Hyperbola, Asymptote, Linear Transformation, Calculation Of Slope, Intercepts.	7hours
	 Inhibition: Reversible And Irreversible Inhibition; Competitive, Non Competitive, Uncompetitive Product Inhibition And Suicide Inhibition. Determination Of Ki And Kd. Bisubstrate Reaction: Cleland's Notation With Examples Of Ordered, Ping-Pong, And Random Reactions. General Rate Equation. Primary And Secondary Plots 	
	Key words: Inhibition, order of reaction, Vmax, Km	
3.0	 Mechanisms Of Enzyme Catalysis: Active Site Structure; Methods Of Determining Active Site Structure, Isolation Of ES Complex, Affinity Labeling, Chemical Modification Studies And Active Site Structure Investigation Nature Of Enzyme Catalysis: Transition State Theory, Proximity And Orientation, Orbital Steering, Acid Base Catalysis, Covalent Catalysis, Metal Ion Catalysis, Nucleophilic and Electrophoilic Catalysis. Intra 	7hours
	Metai Ion Catalysis, Nucleophilic and Electropholic Catalysis, Intra Melacular Catalysis, Entropy Effects, Effect Of Temperature And Dh On	
	Enzyme Catalyzed Reaction	
	Key words: Active site. Catalysis.	
4.0	Cooperativity: binding of Ligands to macromolecules; Scatchard plot.	
	Cooperativity, positive and Negetive Cooperativity. Oxygen binding to hemoglobin. Hill equation, Homotropic and Heterotropic effectors, Aspartyl transcarbamylase as an allosteric enzyme.	7hours
	Key words: Co-operativity. Allosteric Enzyme	

COURSE CONTENTS

General Aspects: Nature Of Enzymes, Localization, Isolation,

5.0 Mechanisms of action of Specific Enzyme: Chymotrypsin; Zymogen Activation, Acid-Base Catalysis, Charge Relay Net Work. Lysozyme, Alcohol Dehydrogenase, Ribonuclease, Carboxypeptidase A, RNA as an Enzyme, Abzymes, Coenzymic Action of NAD⁺, FAD, TPP, PLP, Biotin, CoA, Folic Acid And Lipoic Acid.

Key words: Abzymes, Acid-Base Catalysis

Modules

1.0

 6.0 Isoenzymes: LDH, MultifunctionalEnzymes (DNA Polymerase) and Multi EnzymeComplex (PDC).
 Metabolic regulation of enzyme activity: Feedback regulation, fine

7hours

7hours

Duration

control of enzyme activity.

Fast reactions - Stopped flow, temperature jump method with examples of enzymes.

Key words: Isoenzymes, Fast reactions, Metabolic regulation Note: Course content involves 100% theory

REFERENCES							
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication 1964		
1.	Enzymes	Malcolm Dixon & Edwin C. Webb	Academic press Inc	2			
2.	Enzymes- Biochemistry, Biotechnology, Clinical Chemistry	Trevor Palmer	East West	2	2004		
3.	Fundamentals of Enzymology.	Nicholas Price & Lewis Stevens	Oxford university press.	3	1999		
4.	Enzyme Assays: A Practical Approach	R Eisenthal & M.J. Dauson	Oxford University Press	2	2002		

RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Enzymes	P. Asokan	Chinnaa Publications	2	2005			
2.	Enzymology and Enzyme Technology	Dr. Bhatt S.M	S Chand & Company	1	2014			
3.	Enzymology	T. Devasena	Oxford University Press	1	2010			

FIRST YEAR - SEMESTER - II

Course Title	MOLECULAR BIOLOGY									
Course Type	Hard Core-Theory		Total Hours	48	Hours/Week		03	Credits	03	
Course Code		Evolution	Internal	C	C1+C2 = 15		= 15+15		30 Marks	100
	Evaluation		External	Duration		C3	03H	rs 7	70 Marks	100

COURSE OBJECTIVES (COs)											
CO No.	Course Objectives										
CO-1	Understand regulation.	the	mechanism	of	Prokaryotic	replication,	transcription	and			
CO-2	Understand regulation.	the	mechanism	of	Eukaryotic	replication,	transcription	and			
CO-3	Understand the features of Genetic code and translation mechanism.										
-------	---	-----------	------------	--	--	--	--				
CO-4	CO-4 Understand and the cellular mechanism of Gene expression and regulation.										
	MAPPING CLO'S WITH PSO's AND CD	's									
CLO	Course Learning Outcomes	PSOs	CD's								
No.	On completion of the course the student will	Addressed									
	learn to										
CLO-1	Explain the mechanism of Prokaryotic replication, transcription and regulation.	PSO- 1	Analyse								
CLO-2	Describe the mechanism of Eukaryotic replication, transcription and regulation.	PSO- 2	Remember								
CLO-3	Enumerate the features of Genetic code and translation mechanism.	PSO- 2	Understand								
CLO-4	Evaluate the cellular mechanism of Gene expression and regulation.	PSO -3	Evaluate								
CLO-5	Understand the concept of Protein- DNA interactions. And molality.	PSO -4	Understand								

COURSE CONTENTS

- **1.0 Introduction:** historical perspective, composition of RNA and DNA. bases, chargaff s rule. types of RNA. isolation and purification of RNA and DNA, structure of RNA and DNA, central dogma of molecular biology. DNA as genetic material, experiment of Griffiths, Avery and colleagues, Hershey and Chase experiment. RNA as genetic material of viruses, frenkel-conrat experiment
 - Key words: Purines, Pyrimidines, N^{14} , Genetic content, Bacteria
- 2.0 DNA-Anti parallel Nature: nearest neighbour base frequency analysis. Replication of DNA, semi conservative nature; Messelson and Stahl experiment. replication of double stranded dna, direction of replication, cairn's experiment, semi discontinuous replication, okazaki fragements. DNA polymerase i ii and iii, DNA ligase, DNA topoisomerases. Fidelity of replication, trombon model, translesion synthesis (DNA pol iv and v). replication in viruses, rolling circle model, single stranded dna virus. replications of mitochondrial dna

Key words: Replication, enzymes, Virus

3.0 Transcription: colinearity of genes and proteins, rna polymerase i, ii and iii. rna biosynthesis in prokaryotes and eukaryotes; initiation, elongation and termination. abortive cycling. rna dependent rna synthesis, rna replicase of qßvirus. processing of eukaryotic rna, cap addition, intron splicing, poly a tail addition, rna editing. processing of trna and mrna transcripts. enzymes in dna and rna degradation: nucleases, ribonucleases, classification and role.

Key words: Post transcriptional events, enzymes

4.0 Translation: genetic code, triplet codon, universality features of the genetic code, assignment of codons, studies of khorana, nirenberg, triplet binding techniques, degeneracy, wobble hypothesis, evolution of genetic code and codon usage, variation in the codon usage.

Key words: Codes, codons, Bias

Duration

6hours

10hours

10hours

- **5.0** 3d structure of prokaryotic and eukaryotic ribosomes, ribosomal protein synthesis; initiation elongation and termination. role of mRNA and tRNA. Amino acyl tRNA synthesis and its role in translation accuracy. internal ribosome entry sites. *Key words: Translation, factors*
- 6.0 Post Translation Modification Of Proteins, signal cleavage, disulphide bond formation, O and N-glycosylation, folding of nascent protein, role of chaperones, attachment of glycosyl anchor, and other modifications.dna binding protein motifs-zinc finger, leucine zipper, h-t-h motif.

8hours

6hours

Key words: Significance of PTM Note: Course content involves 100% theory

REFEF	REFERENCES							
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Genes VII	Lewin B	Oxford univ. Press,	5	1994			
2.	Molecular Biology	Robert F. Weaver	McGraw-Hill	4	2008			
3.	Cell and Molecular Biology-Concepts and experiments	Karp, G.	Wiley & son	2	1999			
4.	The Cell-A Molecular Approach.	Cooper, Geoffrey M	Sinauer Associates	2	2000			
5.	Cell and Molecular Biology.	De Robertis, E.D.P. and De Robertis	B. I. Waverly pvt. Ltd.	8	1995			

	RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Edition Publisher		Year of Publication				
1.	Molecular cell biology	Harvey Lodish & David Baltimore.	WH. Freeman and company	4	2000				
2.	Principles of Cell and Molecular Biology	Kleinsmith, L. J. & Kish, V.M	Harper Collins Publishers	2	1995				
3.	Molecular cell biology	Harvey Lodish & David Baltimore.	WH. Freeman and company	6	2005				

FIRST YEAR - SEMESTER – II

Course Title	CARBOHYDRATE & LIPID METABOLISM									
Course Type	Hard Core-Theory		Total Hours	48	Hours/Week (03	Credits	03	
Course Code		Evolution	Internal	C	1+C2	2 = 15	+15		30 Marks	100
Course Code		Evaluation	External	Dura	tion	C3	03H1	rs '	70 Marks	100

COURSE OBJECTIVES (COs)						
CO No.	Course Objectives					
CO-1	understand the metabolism of pathways that yield energy from carbohydrate					
CO-2	understand the diversity of metabolic regulation involved in amino acid metabolism					
CO-3	understand and analyze how these biochemical processes are integrated with lipids					
CO-4	Interlink the metabolism of pathways of heme and porphyrins, integration of all pathways and evaluate the fate of purine and pyrimidine nucleotides through their synthesis and breakdown mechanisms					
CO-5	Analyse the energy-yielding and energy-requiring reactions in life, apply and evaluate the role of high energy compounds in driving cellular processes in animals, as well as plants through photosynthesis					

MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will	Addressed				
	learn to					
CLO-1	Understand and explain major pathways like	PSO- 1	Remember			
	Glycolysis, TCA cycle, Urea cycle etc.					
CLO-2	Analyse and explain the amino acid catabolism like	PSO-2	Remember			
	transamination, transmethylation, decarboxylation,					
CLO-3	Understand biosynthesis and elongation of fatty	PSO-2	Understand			
	acids.					
CLO-4	Understand regulation of heme synthesis,	PSO -3	Apply			
	involvement of organs to achieve energy, explain the					
CLO-5	Analyse bioenergetics of carbohydrates, fatty acids	PSO -4	Analyse			
	etc. in plants and animals					

COURSE CONTENTS

1.0 Bioenergetics: Free energy and entropy. High energy and Low energy Phosphates. Enzymes involved in redox reactions. Biological oxidation electron _ The transport chain _ Oxidative Phosphorylation, F1F0 ATPase- structure and mechanism of action. The chemiosmotic theory. Inhibitors of respiratory chain oxidative. and Phosphorylation-uncouplers, ionophores of phosphorylation.

Key words: thermodynamics; gibbs free energy

2.0 Biological oxidation: Biological redox couplers, participation in oxidative metabolism. Free energy changes in electron transfer reactions. Mitochondrial electron transfer system- Chemical nature, topology and thermodynamic design of electron carriers. Sequence of electron carriers. Isolation of mitochondrial complexes, reconstitution experiments and study of specific inhibitors of Electron Transport Chain.

Key words: Mitochondrial electron transfer system, ETC

3.0 Carbohydrate Metabolism: Introduction to Metabolism -Anabolism and Catabolism, Experimental approaches to study metabolism. Metabolism of Carbohydrates - Glycolysis, Citric acid cycle, HMP shunt, Glucuronic acid pathway, Gluconeogenesis, 10hours Glycogenesis, Glycogenolysis, Glyoxylate cycle. Regulations of Glycolysis, Gluconeogenesis and Glycogen metabolism. Metabolism of Amino sugars, Sialic acids, Mucopolysaccharides and Glycoproteins. Biosynthesis of starch, sucrose & glycogen. Key words: insulin resistance, metabolism

Duration

10hours

4.0 Lipid Metabolism: Biosynthesis & catabolism of fatty acids and its regulation. Knoop's Experiment, Saturated And Unsaturated Fatty Acids Metabolism of ketone bodies - Formation, utilization, excretion and clinical significance Metabolism and regulation of triglycerides, phospholipids and sphingolipids. Cholesterol Biosynthesis, regulation, transport and excretion. Metabolism of lipoproteins. Synthesis of Prostaglandins, thromboxanes, and leukotrienes.

Key words: Steroid metabolism

5.0 Hormonal Regulation of Glucose & Lipid Metabolism:

Effect of Insulin, Glucagon , Catecholamines , Growth & Thyroid Hormones, Corticosteroids on Carbohydrate and Lipid Metabolism in Liver And Adipose tissue

8hours

Integration of Metabolic Pathways: Integration of carbohydrate and lipid metabolism & their regulation and manipulation.

Note: Course content involves 100% theory

REFERENCES							
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication		
1.	Harper's Biochemistry	Murray, et al	McGraw Hill	25	2000		
2.	Cell and Molecular Biology.	De Robertis, E.D.P. and De Robertis	B. I. Waverly pvt. Ltd.	8	1995		
3.	The Cell-A Molecular Approach.	Cooper, Geoffrey M	Sinauer Associates	2	2000		

RECOMMENDED BOOKS							
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio		
1.	Principles of Cell and Molecular Biology	Kleinsmith, L. J. & Kish, V.M	Harper Collins Publishers	2	1995		
2.	Molecular cell biology	Harvey Lodish & David Baltimore.	WH. Freeman and company	6	2005		

FIRST YEAR - SEMESTER - II

Course Title	ENZYMOLOGY, MOLECULAR BIOLOGY & METABOLISM									
Course Type	Hard Core-Practical		Total Hours	48	Hours/Week		06	Credits	03	
Course Code	Enclustion		Internal	C1+C2 = 15+15		30 Marks		100		
Course Code		Evaluation	External	Duration	l	C3	03Hrs	7() Marks	100

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Gain an enhanced overall understanding of enzyme assays and in particular the influence of various physicochemical characteristics upon enzyme activity.				
CO-2	Gain an understanding of buffers and their importance in the context of pH control.				
CO-3	Apply and analyze the basics of the major analytical techniques including sample preparation, standardization and data analysis for each technique and develop interpersonal and teamwork skills				
CO-4	Evaluate the theory and practice of protein purification, chromatography, electrophoresis, centrifugation, and other essential methods in modern molecular bioscience				
CO-5	Gain knowledge on molecular techniques				

MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will learn to	Addressed					
CLO-1	Acquire direct laboratory experience in electrophoresis	PSO- 1	Understand				
CLO-2	Recognise, analysis, draw graph and calculated the enzyme	PSO- 2	Remember				
CLO-3	Learn how to run gel and chromatography	PSO -2	Understand				
CLO-4	Have insight in the physico-chemical properties of proteins that underlie purification methods.	PSO -3	Remember				
CLO-5	Acquire direct laboratory experience in electrophoresis	PSO- 4	Analyse				

Modules	COURSE CONTENTS	Duration
1.0	Enzymology	
1.1	Purification of sweet potato amylase- Extraction, ammonium	3hours
1.2	Km and Vmax	3hours
1.3	Optimum temperature and energy of activation	3hours
1.4	pH optimum of salivary amylase	3hours
1.5	Assay of invertase from yeast- initial velocity calculation	3hours
2.0	Molecular Biology	
2.1	Isolation of DNA and RNA from biological sources	3hours
2.2	Estimation of DNA by diphenylamine reagent	3hours
2.3	Estimation of RNA by orcinol reagent	3hours
2.4	Electrophoresis of DNA and RNA	3hours
3.0	Metabolism	
3.1	Determination of Pyruvate	3hours
3.2	Amino transferase reaction	3hours
3.3	Determination of Lactate, activity of LDH	3hours

3.4 Determination of Phospholipase and Lipase activity, Lipoprotein Lipase assay Note: Course content involves 100% Practicals

REFE	RENCES				
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Varley's Practical Clinical Biochemistry	Alan H .Gowenhock	CBS publishers.	6	2014
2.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II,	2014
3.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education Private Limited, New Delhi	2 Volume 1, 2 and 3.	2011

LIST C- SOFT-CORE GENERAL COURSES

- 1. Basics of Herbal Technology
- 2. Endocrinology
- 3. Functional Foods and Neutraceuticals

Course Title		BASICS OF HERBAL TECHNOLOGY								
Course Type	Soft Core- Theory		Total Hours	30	Hours/Week		02	Credits	02	
Course Code		Enclustion	Internal	C	1+C2	2 = 15	+15	3	30 Marks	100
Course Code	Evaluation		External	Durat	tion	C3	03H1	rs 7	70 Marks	100

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Understand the basic concept of Ethano-medicine.				
CO-2	Understand and importance of medicinal plants				
CO-3	Analyze the medications of tribal and folk to treat diseases				
CO-4	Understand the basic concept of traditional knowledge of medicine				
CO-5	Understand the medicinal uses of fruits and vegetables				

MAPPING CLO'S WITH PSO's AND CD's				
CLO	Course Learning Outcomes	PSOs	CD's	

No.	On completion of the course the student will	Addressed	
	learn to		
CLO-1	Demonstrate the importance of Ethano-medicine	PSO- 1	Remember
CLO-2	Develop an understanding of medicinal plants	PSO-2	Understand
CLO-3	Assess the mechanism of drug action of tribal medicine	PSO -2	Understand
CLO-4	Assess the therapeutic role of plants in day to day life	PSO- 4	Analyse

COURSE CONTENTS

1.0 Ethnomedicine - definition, history and its scope - Inter disciplinary approaches in ethanobotany

> Cultivation -harvesting - processing - storage - marketing and utilization of medicinal plants.

8 hours

Pharmacognasy - systematic position medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Goose berry and Ashoka.

Keywords: key words: sidha,Ayurvedha,unani

2.0 Phytochemistry- active principles and methods of their testing identification and utilization of the medicinal herbs; Catharanthus roseus (cardiotonic), Withania somnifera (drugs acting on nervous system), Clerodendron phlomoides (anti-rheumatic) and Centella asiatica (memory booster).

> Analytical pharmacognasy - Drug adulteration - types, methods of drug evaluation – Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds).

keywords: Phytochemicals, alkaloids, flavonoids, steroids

3.0 Conservation of herbs- Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi)- Herbal foods-future of pharmacognosy.

key words: Withania somnifera, neem, tulsi

4.0 Plants in day today life - Ocimum sanctum, Aloe vera. Nutritive and medicinal value of some fruits (Orange, Mango, Banana, Lemon, Pomegranate) and vegetables - Greens (Moringa, Solanum 4 hours nigrum Cabbage).

key words: Guava, Sapota

DEEDENOEG

Note: Course content involves 100% theory

Ker er	REFERENCES						
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication		
1.	Glossary of Indian medicinal plants,	R.N.Chopra, S.L.Nayar and I.C.Chopra	C.S.I.R, New Delhi.	1	1956.		

Duration

10 hours

2.	The indigenous drugs of India	Kanny, Lall, Dey and Raj Bahadur	International Book Distributors.	2	1984
3.	Herbal plants and Drugs	Agnes Arber	Mangal Deep Publications.	1	, 1999
4.	Ayurvedic drugs and their plant source	V.V. Sivarajan and Balachandran Indra	Oxford IBH publishing Co	1	1994

RECO	MMENDED BOOKS				
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio
1.	Ayurveda and Aromatherapy	Miller, Light and Miller Bryan	Banarsidass, Delhi	2	1998
2.	Principles of Ayurveda	Anne Green	Thomsons, London	2	2000

FIRST YEAR - SEMESTER - II

Course Title	ENDOCRINOLOGY									
Course Type	Soft Core- Theory		Total Hours	Total 30 Hours/Week 02 C		Hours/Week		Credits	02	
			Internal	C	1+C2 = 15+15		3	30 Marks	100	
Course Code	Evaluation		External	Durat	ion	C3	03H	rs 7	70 Marks	100

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Understand the Structure and functions of Hypothalamic and pituitary hormones.					
CO-2	Understand the hormonal regulations of thyroid and parathyroid glands.					
CO-3	Understand the synthesis, secretion, metabolism, regulation and biological effects of adrenal hormones					
CO-4	Understand the structure, metabolism and biological actions of gonads and pancreatic hormones.					
CO-5	Understand the Fundamentals concepts of signal transduction and signaling pathways					

	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Explain various hormones secreted by endocrine	PSO -1	Understand						
	glands and their functions.								
CLO-2	Understand the anatomy of the endocrine system.	PSO-2	Remember						
CLO-3	Understand the basic properties of hormones.	PSO- 2	Understand						

CLO-4	Explain the body function	role o n.	of the 1	hormone	es in	maintaining	PSO -3	Remember
CLO-5	Understand disorders	and	explair	n the	major	• endocrine	PSO -4	Apply

Modules	COURSE CONTENTS	Duration
1.0	Endocrine System : Endocrine organs in man. Location and inter relationship of endocrine glands in man; hormones produced by hypothalamus, pituitary, thyroid, parathyroid, pancreas, adrenals, gonads. Hypo and hyper production of hormones secreted by; pituitary, thyroid, pancreas, adrenals and gonads. Heart and kidney as endocrine organs	12hours
	Key words: Hormones and organs	
2.0	Hormones produced by hypothalamus; GRH, somatostatin, TRH, CRH, GnRH. Hormones of anterior, posterior and median lobes. Pro-opiomelanocortin. Hormones produced by testes and ovaries, menstrual cycle.	8hours
	Key words: POMC, reproductive hormones, hypothalamus, pituitary	
3.0	Regulation of hormone production and release: hypothalamus- pituitary-target organ axis and regulation by feedback mechanism. Conversion of cholesterol to steroid hormone.	4hours
	Key words: Inhibition, steroid hormone	
4.0	Mechanism of hormone action:	
	Peptide hormones: General mechanisms of cell signaling by hydrophilic factors, transmembrane receptors, G protein coupled receptors, α_i and α_s receptor tyrosine kinase. Visual cycle, gustatory and auditory signals. Ion Channel receptors, Sodium channel	14hours
	Key words: Receptors, signal transduction	
5.0	Second messengers: IP_3 , DAG, cAMP, protein Kinases. Nitric oxide; generation and action.	6hours
	Growth factors: Structure, mechanism of action and receptors of EGF, PDGF. Structure and function of insulin receptor.	onours
	Key words: NO synthase, insulin, endothelium, platelets	
6.0	Mechanism of action of steroid hormones: Steroid receptors, mechanism of action of estrogen receptors. Receptor down regulation, desensitization and up regulation.	6hours
	Key words: Steroid receptors, Regulation	
7.0	Pineal gland, melatonin and circadian rhythm. Chemistry and action of prostaglandins, Prostacyclins and Thromboxanes. Eicosanoidreceptors.	6hours

Key words: lipid mediators, melatonin, serotonin

8.0 Insect hormones: Structure and function of molting hormone, ecdysone, juvenile hormones,

Pheromones: Mechanism of perception and action. Special case
of communication in honey bees -dance language**8hours***Key words:* Significance of insect hormones,
communication*communication*

REFEF	RENCES				
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Biochemistry of Signal Transduction and Regulation	Gerhard Krauss	Wiley VCH	3	1999
2.	Fundamentals of biochemistry	Jain, J.L	S.Chand publication	6	2005
3.	Concepts in cell & molecular biology	Rastogi S.C, Sharma, Anuradha Tanden	New age publishers	3	2010

Note: Course content involves 100% theory

RECO	MMENDED BOOKS				
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Cell Biology, Genetics, Molecular Biology, Evolution & Ecology	Verma P.S. Agarwal V.K	S Chand publication	5	2006
2.	Biochemistry of Signal Transduction and Regulation	Gerhard Krauss	Wiley VCH	5	2014
3.	Biochemical Messengers: Hormones, neurotransmitters and growth factors	D. Hardie	Springer	2	2012

FIRST YEAR - SEMESTER - II

Course Title		FUNCTIONAL FOODS AND NEUTRACEUTICALS								
Course Type	Soft Co	Soft Core- Theory		30	Hours/Week		/eek	02	Credits	02
Course Code		Evolution	Internal	C	$1+C_2$	2 = 15	+15		30 Marks	100
Course Code	Evaluation		External	Durat	tion C3		03H	rs	70 Marks	100

	COURSE OBJECTIVES (COs)
CO No.	Course Objectives
CO-1	Understand basic of the concepts of neutraceutical and functional foods
CO-2	Apply and understand the use of functional food for managing chronic diseases

	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Understand basic of the concepts of neutraceutical	PSO -1	Understand						
	and functional foods								
CLO-2	Apply and understand the use of functional food for	PSO- 2	Apply						
	managing chronic diseases								

COURSE CONTENTS

Duration

 Functional Food and Neutraceuticals- Definition, history, types
 Probiotics- Taxonomy and important features of probiotic microorganisms. Health effects of probiotics including mechanism of action. Probiotics in various foods: fermented milk products, non hours

milk products etc. Quality Assurance of probiotics and safety **31**

Keywords: probiotics, sources, applications

3.0 Prebiotics- Definition, chemistry, sources, metabolism and bioavailability, effect of processing, physiological effects, effects on human health and potential applications in risk reduction of diseases. perspective for food applications for the – Non-digestible carbohydrates/oligosaccharides, Dietary fibre, Resistant starch, Gums

Keywords: prebiotics, sources, applications

4.0 Perspective for food applications for the – Polyphenols: Flavonoids, catechins, isoflavones, tannins, Phytoesterogens, Phytosterols, Glucosinolates, Organo sulphur compounds, Other components – Phytates, Protease.

Definition, chemistry, sources, metabolism and bioavailability, effect of processing, physiological effects, effects on human health and potential applications in risk reduction of diseases.

Keywords: polyphenols, risk reduction, bioavailability

5.0 Concept of free radicals and antioxidants; antioxidants role as nutraceuticals and functional foods. Properties and functions of various nutraceuticals/functional food ingredients: Proteins, Peptides and nucleotides, Conjugated linoleic acid and n-3 fatty acids, Vitamins and Minerals.

Keywords: free radicals and antioxidants, n-3 fatty acids

Note: Course content involves 100% theory

REFEF	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication

1.	Functional Foods and Nutraceuticals	Aluko, Rotimi	Springer- Verlag New York Inc	1	2012
2.	Handbook of Nutraceuticals and Functional Foods	Robert E.C. Wildman, Robert, Wildman, Taylor C	Wallace	3	2002

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Nutraceuticals Functional Foods	Satinder Kaur Brar, Surinder Kaur and Gurpreet Singh Dhillon	Wiley VCH	1	2014.

SECOND YEAR - SEMESTER - III

Course Title		NITROGEN METABOLISM								
Course Type	Hard Core- Theory		Total Hours	48	Hours/Week			03	Credits	03
Course Code		Evolution	Internal	C1-	+C2	2 = 15	+15	30	Marks	100
Course Code		Evaluation	External	Duratio	n	C3	03Hrs	70	Marks	100

COURSE OBJECTIVES (COs)								
CO No.	Io. Course Objectives							
CO-1	Describe the modes of nitrogen fixation (both biological and abiological)							
CO-2	Explain the steps involved in nitrogen fixation by free living organisms & leguminous plants							
CO-3	Describe the assimilation of nitrate and ammonia by plants							
CO-4	Describe amino acid synthesis in plants							

MAPPING CLO'S WITH PSO's AND CD's							
CLO No.	Course Learning Outcomes	PSOs	CD's				
	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Explain the plant tissue structure, transport mechanism	PSO-2	Understand				
CLO-2	Explain the role of the nitrogen cycle in plants	PSO-3	Apply				
CLO-3	Describe amino acid synthesis in plants	PSO-1	Understand				

Modules

COURSE CONTENTS

Duration

1.0	Nitrogen Metabolism:Importance Of Nitrogen In BiologicalSystems, Nitrogen Cycle.Nitrogen Fixation;SymbioticNon-Symbiotic,NitrogenaseComplex, EnergeticsAndRegulation.Formation Of Root Nodules In Legumes.Assimilation8hoursOf Nitrate And Ammonium Ion.Key words: Plant system, atmosphere8hours							
2.0	Proteins : Genera Proteosome Path Biosynthesis Of And Degradation Non Ribosomal P Biosynthesis Of O <i>Key words: prot</i>	l Mechanisms of Deg nway, Lysosomal F Glycoproteins And Of Heme And Porphy eptide Synthesis: Glu Creatine ein degradation, G	radation In Cells; Pathway. Degrada Proteoglycans. Bio rrins. Itathione, Gramicio AGs, Glycans, bloo	Ubiquitin- tion And osynthesis line.	10hours			
3.0	General Mecha Regulations: Desulphuration, Ammo Acids. Ker Key words: enzy	nisms of Amino eamination, Transa Degradation And togenic And Glucoger mes	Acid Metaboli mination, Decarb Biosynthesis Of nic Amino Acids.	sm And oxylation, Individual	14hours			
4.0	Regulation Of branched chain transglutaminase born errors of alkaptonuria, ma <i>Key words: Diso</i>	Amino Acid Biosy amino acids, aroma e cycle, glutamate de amino acid degra ple syrup urine. rders, inhibition	nthesis: asparta atic amino acids, hydrogenase, urea dation; phenyl l	te family, histidine, cycle. in cetonuria,	Shours			
5.0	 Purines And Pyrimidines: pathways of degradation of nucleic acids, purines and pyrimidines, uric acid formation. salvage pathways, de novo biosynthetic pathways for purines and pyrimidines and regulations. gout and lysch-nyhan syndrome. conversion of nucleotides to deoxynuclotides. mechanism of action of methodrevate 							
6.0	 Biosynthesis of Cofactors: NAD⁺, FAD And Coenzyme A, Polyamine Biosynthesis And Their Metabolic Role. Polyamine Biosynthesis- spermine and spermidine <i>Key words: cofactors</i> 							
7.0	Transpiration. Ph and II, light ha phosphorylation; cycle, C3, C4, a photosynthesis, R Mechanisms of a abscisic acid. Hos <i>Key words: Pho</i> <i>interaction</i> Note: Course con	otosynthetic apparat arvesting antenna of cyclic and noncycle and CAM cycle; Ph UBISCO Plant hormo- ction of auxins, gib t parasite interaction torespiration, Plan tent involves 100%	tus in plants, pho complex. Electron ic, oxygen evolut otorespiration, re ones: Physiological berlins, cytokining thormones, Hos Theory	tosystems flow and ion, Calvis gulation c effects an s, ethylene st parasit	I d of d 9 hours e,			
REFERE	NCES		-					
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	A Textbook of Plant Physiology, Biochemistry and Biotechnology	S K Verma & Mohit Verma	S Chand publishers	4	1995			

David L. Nelson

W.H. Freeman

2004

4

2.

Lehninger

	Principles of	and Michael M.	& company		
	Biochemistry	Cox			
3.	Plant Physiology	H. S. Srivastava	Rastogi	1	2005
	and Biochemistry	&N. Shankar	Publications	1	2003

RECOM	MENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Plant Physiology	Kochhar	Cambridge India	1	2016
2.	Plant Physiology	Malik C.P	Kalyani Publishers	1	2014
3.	Textbook of Biochemistry	Dr Kondreddy Rambabu	Aitbs Publishers	1	2013

Course Title	GENETIC ENGINEERING AND GENE EXPRESSION									
Course Type Hard Core- Theory		Total	48	Hours /We				Credite	03	
course type	manu cone- meory		Hours	ours		ilouis/we		05	Cicuits	05
Course Code		Fuclustion	Internal	C1+C2 = 15+15				30 Marks	100	
Course Code		Evaluation	External	Dura	tion	C3	03H1	's ′	70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	Understand the principles of the techniques of Gene transfer methods.						
CO-2	Analyze the methods of screening for Tissue culture.						
CO-3	Evaluate the various techniques used in In-vitro fertilization and embryo transfer.						
CO-4	Analyze and evaluate the different applications of Bioprocess Technology.						

MAPPING CLO'S WITH PSO's AND CD's						
CLO No.	Course Learning Outcomes	PSOs	CD's			
	On completion of the course the student will	Addressed				
	learn to					
CLO-1	understand the concept of recombinant DNA technology or genetic engineering	PSO-2	Understand			
CLO-2	Understand the Plant Tissue Culture and Transgenic plant technology	PSO-3	Apply			
CLO-3	Explain the general principles and applications of Bioprocess Technology	PSO-1	Analyse			
CLO-4	explain the concept and applications of In vitro fertilization and embryo transfer methods	PSO-1	Understand			
CLO-5	Provide examples of current applications of biotechnology and Intellectual Property Rights and types, patenting	PSO-4	Remember			

COURSE CONTENTS

Duration

- 1.0 Genetic Engineering: Extraction and purification of nucleic acids (DNA and RNA) from biological sources. Definition, aims and objectives of recombinant DNA technology, restrictionmodification systems, restriction enzymes; type I, II and III, specificity, sticky ends and blunt ends, isoschizomers. Gene cloning; genomic cloning, shot gun cloning, cDNA cloning. 6 hours Vectors: Plasmids, phage, cosmids and phagemid. Yeast cloning vectors, plant vectors, bacterial artificial chromosome, SV40, shuttle vectors, construction of expression vectors. Key words: methods, Sites-ORI, genes, significance, Vectors Ligation: Blunt end and sticky end ligation, use of linkers 2.0 and adopters, homo polymer tailing, colony hybridization, plaque hybridization. Transformation: Micro injection, electroporation, lipofection, 6 hours calcium phosphate method, protoplast fusion/somatic cell hybridization and biolistic methods. Transgenic plants and animals, gene knock out Key words: identification, ligation, transformation, gene knock out 3.0 Techniques: chromosome walking, PCR; analysis of products, nested PCR, applications of PCR in cloning, agriculture and medicine. RT-PCR technique and applications. Real time PCR for quantification. **Identifying the right clone:** Direct screening; insertional inactivation of marker gene, visual screening, and plaque 6 hours phenotype. Indirect screening; immunological techniques, translation, hybrid select translation. hvbrid arrest Screening using probes; construction of gene probes, hybridization and labeling Key words: Quantification, identification 4.0 Mapping in Prokaryotes and Viruses: Bacterial transformation and transduction, conjugation; F+ plasmids, Hfr cells, time of entry mapping. Arrangement of genes in 6 hours phage chromosome, plaque formation and lytic cycle. Fine structure of rII locus of T4. Lysogeny and lambda phage. Key words:lysis, lysogeny, phages, genes 5.0 Blotting techniques: Dot blot, Southern, Northern, Western blot, DNA foot print assay, DNA finger print assay, gel retardation assay, nuclease protection assay. RFLP, RAPD **Applications**: Gene therapy, applications in agriculture medicine, industry. GM foods, terminator gene, negative 6 hours impact of genetic engineering. Key words: Identification of clones, Golden rice, edible vaccines
- 6.0 Regulation of gene expression in prokaryotes: Operon concept-Lac operon, structure and regulation Dual functions of the repressor in arabinose operon , gal operon- role of two operators, tryptophan operon- Transcriptional control by attenuation in tryptophan operon. **Riboswitches-** Role of riboswitches, CRISPR-CAS

Key words: operons, gene editing

7.0 Regulation of Eukaryotic gene expression - Regulation at the level of genome-nucleosome structure, Chromatin remodelling, SWI/SNF complex, Chromatin immunoprecipitation (ChIP) analysis,Role of histone 6 hours modification, Histone code Hypothesis, Transcription factors-NFkB, Si RNA, mi RNA, RNA stability, Regulation of GCN-4 Key words: RNA types, gene regulation Note: Course content involves 100% Theory

REFE	RENCES				
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Introduction to Genetic Engineering	Desmond S. T. Nicholl	Cambridge University Press	3	2008
2.	Genetic Engineering Handbook	David Rhodes House		1	2017
3.	Principles of Biotechnology and Genetic Engineering	A.J. Nair	Laxmi Publications	2	2009

RECO	RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Principles of Gene Manipulation and Genomics	Sandy B. Primrose, Richard Twyman	Wiley-Blackwell	7	2006				
2.	Genetic Engineering	Smita Rastogi, Neelam Pathak	Oxford	1	2009				
3.	Laboratory Manual for Genetic Engineering	Vennison & S John	Prentice Hall India Learning Private Limited	1	2009				

Course Title		IMMUNOLOGY								
Course Type	Hard Core- Theory		Total Hours	48	Hours/Week		eek	03	Credits	03
Course Code		Evaluation Internal C1+C2 =				C1+C2 = 15+15			30 Marks	100
Course Code			External	Dura	ation	C3	03	Hrs	70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	Understand and apply the types of immunity and lymphoid organs and lymphocytes						
CO-2	Understand Immunity and Complement System						
CO-3	Understand and apply the various Immunological Techniques in daily life style						
CO-4	Understand the Transplantation and Tumor Immunology and apply the mechanism						
	of autoimmunity						

MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will learn	Addressed				
	to					
CLO-1	State the role of the immune system in the human body	PSO-2	Understand			
CLO-2	Describe the functions of Immunity and Complement System	PSO-3	Apply			
CLO-3	Describe Immunological techniques	PSO-1	Analyse			
CLO-4	Define the gene organization and explain their functions	PSO-1	Understand			
CLO-5	Explain Autoimmune and Immunodeficiency Disorders and explain their causes	PSO-4	Remember			

COURSE CONTENTS

 1.0 Introduction: Historical Development And Milestones In Immunology, Antigenicity, Immunogenicity, Innate And Acquired Immunity, Primary And Secondary Lymphoid Organs, Self And Non Self Discrimination, Antigens And Antibodies, Haptens, Determinants, Epitopes And Paratopes, Carbohydrates, Proteins, Nucleic Acids and Cells as Antigens, Valency of Antigen, Epitope Analysis, Classes And Subclasses of Immunogloblins, Structure of Immunoglobulins, Hyper Variable Region- Isotypic, Allotypic & Idiotypic Variation

Keywords: Epitope, Valency, Hyper Variable Region

2.0 Cellular Basis of Immunity : Primary And Secondary Immune Response, Reticuloendothelial System ,T, B And Accessory Cells, Development of T And B Cells, Sub Sets of T And B Cells : T-Helper Cells, T-Killer Cells, T-Suppressor Cells, T And B Cell Receptors, Antigen Processing and Presentation, T and B Interaction, Cytokines and Co-Stimulatory Molecules, Lymphokines, Interleukins, Structure And Function of Il-La, Il-2, Tnfa, Suppression of Immune Response, Immunoglobulin Genes, Generation of Immunoglobulin Diversity, Gene Rearrangement and Other Mechanisms, Clonal Selection theory of Burnet

Keywords: Selection theory, Antigen Processing

3.0 Non-specific defenses in man: Barriers to infection : skin, mucous membranes, Inflammation, Complement hyper sensitivity reactions (Type I, II, III and IV) , Defensins, Toll-like receptors, DAMP , PAMP , Pattern recognition

 $\ensuremath{\textbf{MHC}}$: MHC gene and its polymorphism , Role of MHC in immune response and transplantation

Transplantation: Autograft, Isograft, Allograft, Xenograft, Graft rejection : graft vs. host reaction

Keywords: Transplantation, Barriers to infection

4.0 Tumour immunology: Tumour associated antigens , Factors favoring tumour growth, Immune surveillance ,Tumour necrosis factor- α and $\beta.$

Disorders of immunity: Immunological tolerance, auto immune disorders, AIDS, SCID

Duration

10hours

10hours

10hours

Keywords: Tumour associated antigens, Immunological tolerance

5.0 Vaccines: Adjuvants, vaccines and their preparations, Polyclonal and monoclonal antibodies , hybridoma technique

In-vitro antigen-antibody reaction: Precipitation , Agglutination , Complement fixation, Immunodiffusion , Immunoelectrophoresis , Defense system in lower organisms

8hours

Keywords: Vaccines, hybridoma technique, Defense system

Note: Course content involves 100% Theory

REFERE	NCES				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Essentials of Immunology	Janis Kuby	Freeman, W. H. & Company	3	1997
2.	Monoclonal Antibodies – Priniciples and Practice	J. W. Goding	Academic Press	3	1996
3.	Immunology	Roitt Ivann, Jonathan Brastoff, David Male	Mosby-Year Book	1	1993

RECOM	MENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Roitt's Essential Immunology	Peter J. Delves , Seamus J. Martin Dennis R. Burton Ivan M. Roitt	Wiley- Blackwell	12	2011
2.	A Textbook of Immunology	Latha P.Madhavee	S Chand & Company	1	2012
3.	Immunology	Dulsy Fatima (Author), N Arumugam	Saras Publication	1	2014

Course Title	NI	NITROGEN METABOLISM, IMMUNOLOGY AND GENE EXPRESSION								
Course Type	Hard Core- Practical		Total Hours	48	Hours/Week		/eek	06	Credits	03
Course Code		Evolution	Internal	C1	+C2 =	15+1	5	3	0 Marks	100
Course Code	Evaluation		External	Dura	tion	C3	03H1	rs	70 Marks	100

COURSE OBJECTIVES (COs)				
CO No.	Course Objectives			
CO-1	understand and apply the knowledge of the theory and practice of various clinical techniques like genetic engineering and immunology			
CO-2	Identify and analyze the staining techniques			
CO-3	Understand principles, theory and calculations of each experiment			
CO-4	Perform quantitative and qualitative analysis of known standards as well as unknown samples develop problem-solving skills and to nurture professional attitudes			
CO-5	Understand the applicability of the biochemical methods to realistic situations.			

MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will learn	Addressed				
	to					
CLO-1	Gain technical experience and handle adjustable micro pipettes in a reproducible manner	PSO- 1	Understand			
CLO-2	Plan experiments, write protocols	PSO- 2	Remember			
CLO-3	Perform logical reasoning and criticizing data	PSO -2	Understand			
CLO-4	Demonstrate the use of advance microscope.	PSO -3	Remember			
CLO-5	Understand and interpretation of test results	PSO- 4	Analyse			

Modules	COURSE CONTENTS	Duration		
1.0	Nitrogen Metabolism			
1.1	Estimation of ammonia	3hours		
1.2	Nitrogen content of food by digestion and nitrogen estimation	3hours		
1.3	Estimation of Urea	3hours		
1.4	Estimation of Uric acid	3hours		
1.5	Estimation of creatine and creatinine			
2.0	Genetic Engineering			
2.1	Inductionof Beta galactosidase in E.coli	3hours		
3.0	Immunology			
3.1	Immunodiffusion	3hours		
3.2	Purification of IgY	3hours		
3.3	Demonstration of ELISA	3hours		
3.4	Assay of superoxide, Hydrogen peroxide, free radicals and free radical scavenging	3hours		

3.5	Macrophage phagocytosis	3hours
3.6	Cell counting of WBC and Platelets	3hours
3.7	Blood Grouping	3hours
4.0	Histochemistry	
4.0 4.1	Histochemistry Simple staining for plant cell	3hours

Note: Course content involves 100% Practicals

REFEI	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Varley's Practical Clinical Biochemistry	Alan H .Gowenhock	CBS publishers.	6	2014
2.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II,	2014
3.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010

RECOMMENDED BOOKS						
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication	
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education	2	2011	

LIST D- SOFT-CORE GENERAL COURSES

- 1. Histochemistry & Cancer Biology
- 2. Ecology & Evolution

Course Title		HISTOCHEMISTRY & CANCER BIOLOGY								
Course Type	Soft Co	re. Theory	Total	30	Hou	ire /W	leek	02	Credits	02
course type	Solt Cole- Theory		Hours	50	Hours/ week		04	Cicuits	02	
Course Code		Evolution	Internal	C	1+C2	2 = 15	+15	0	30 Marks	100
Course Code	Evaluat	Evaluation	External	Durat	tion	C3	03H:	rs 7	70 Marks	100

COURSE OBJECTIVES (COs)					
CO No. Course Objectives					
CO-1	Asses the relationship between histology and the pathogenesis of disease				
CO-2	Understand the working principles, tools and techniques of Histochemistry				

CO-3	Understand the multistep, genetic alterations which enable the transformation						
	of a normal cell to a cancer						
CO-4	types of gene mutations possible and how these mu	itations can	contribute to				
	cancer formation						
CO-5	critically evaluate the role of diet in cancer development	it and cancer	prevention				
MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Understand the principles of Histochemistry	PSO- 1	Remember				
CLO-2	Recall and apply the procedures involved in	PSO-2	Understand				
	histopathology to identify the diseases.						
CLO-3	how external or internal stimuli can lead to	PSO -2	Understand				
	apoptosis						
CLO-4	List and describe the steps that lead to metastasis	PSO- 3	Analyse				
CLO-5	Clarify how cancer cells escape cell death	PSO- 4	Analyse				

COURSE CONTENTS

1.0 Tissues: Formation of different kinds of tissues from primary germ layers. Types and functions of epithelial tissue, inter-cellular junctions. Connective tissue – extra cellular matrix, Collagens

– Types, composition, structure and synthesis, Elastin, **5 hours** fibronectins, and other proteins of the extracellular matrix. Basal lamina; laminins and associated proteins and their functions.

Keywords: Types of tissues

2.0 Principles of Histochemistry: Principles, staining, mounting, preservation and methods of application and utility of classical histochemical Techniques: for localization of glycoproteins (PAS), nucleic acids (Feulgen) and steroid dehydrogenase activity.

Key words: Fixation, Microtome, Microscopic Visualization

3.0 Histopathology in Diseases: Morphological alterations in cells due to disease, types of degeneration clouding, hyaline, hydrophic and fatty degeneration. Etiology, pathogenesis and histopathology of Liver cirrhosis and atheroscelerosis, Neuropathology of alcoholism and methanol poisoning. Histopathology: Tumors-malignant and non-malignant, types of carcinoma, histopathology of breast and prostate tumors.

Key words: Histopathology of liver cells

4.0 Introduction: Growth characteristics of cancers cells; neoplasia, anaplasia, metaplasia and hyperplasia, types of cancer benign, malignant, metastatic cancers. Carcinomas, sarcomas, adenomas, haemopoetic cancers. Characteristics of cancer cells, changes in cell membrane structure and functions

Oncogenes: Provirus, protovirus, oncogenes and proto oncogenes. Mechanism of carcinogenic transformation by oncogenes, viral oncogenes. Tumor suppressor genes - properties, mechanism of tumor suppressor genes in cancer induction with

Duration

5 hours

special reference to P53 gene.

Key words:cancer, oncogenes

5.0 Carcinogenesis: Principles of carcinogenesis- chemical carcinogenesis, stages in chemical carcinogenesis - Initiation, promotion and progression. Physical carcinogenesis - X-ray radiation. Viral carcinogenesis. Free radicals and antioxidants in cancer.

7 hours

Diagnosis and Treatment: Cancer screening diagnosis and treatment. RIA and ELISA. Strategies of anticancer drug therapy chemotherapy, gene therapy, Immunotherapy and radiotherapy.

Key words: carcinogenesis, diagnosis

Note: Course content involves 100% Theory

REFERENCES								
Sl.No	Title of the book	of the book Name of the Author Name of the Edition States Name of the States States Name of the States States States Name of the States		Edition	Year of publication			
1.	Varley's Practical Clinical Biochemistry	Alan H .Gowenhock	CBS publishers.	6	2014			
2.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II,	2014			
3.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010			

RECOMMENDED BOOKS								
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education Private Limited, New Delhi	2 Volume 1, 2 and 3.	2011			

Course Title		ECOLOGY & EVOLUTION										
Course Type	Soft Core- Theory		Total Hours	30	Hours/Week			02	Credits	02		
Caura Cada	arse Code Evaluation		[] Evolution		Internal	C	C1+C2 = 15+15		1+C2 = 15+15 30 I		30 Marks	100
Course Code			External	Dura	tion	C3	03H	rs 7	70 Marks	100		

COURSE OBJECTIVES (COs)						
CO No.	Course Objectives					
CO-1	Analyse the diversity of evolutionary thoughts					
CO-2	Identify the species concepts, Life history strategies; adaptive radiation					
CO-3	Evaluate the Environmental and Community Ecology					
CO-4	Explain the role of Ecosystem structure, function, energy flow					
CO-5	Explain the Biodiversity and its conservation					

MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Understand the diversity of evolutionary thoughts	PSO- 1	Remember				
CLO-2	Identify the species concepts, Life history strategies; adaptive radiation	PSO- 4	Apply				
CLO-3	Explain the Environmental and Community Ecology	PSO- 2	Understand				
CLO-4	Explain the role of Ecosystem structure, function,	PSO -2	Understand				
CLO-5	energy flow Understand the Biodiversity and its conservation	PSO- 3	Analyse				

COURSE CONTENTS

1.0 Biotic and abiotic interactions. Concept of habitat and niche; Population Ecology; concept of metapopulation. Species Interactions: Types of interactions, inter specific competition, herbivory, carnivory, pollination, symbiosis. Nature, structure and attributes; levels of species diversity and its measurement; edges and ecotones. Ecological Succession: Types; mechanisms; changes involved in succession; concept of climax.

Key words: Pioneer species

2.0 Ecosystem structure, function; energy flow (food chain and food web) and mineral cycling (C, N, and P); primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, esturine). Biogeography: Major terrestrial biomes; theory of island biogeography; biogeographical zones of India. Conservation Biology: Principles and management, Indian case studies on conservation / management strategy (Project Tiger, Biosphere reserves).

Key words: Factors affecting energy flow

3.0 Evolutionary Time scale. Origin of basic biological molecules; Abiotic synthesis of organic monomers and polymers; Concept of Oparin and Haldane; Experiment of Miller; The first cell; Evolution of prokaryotes and Eukaryotes. Anaerobic and aerobic metabolism.

Key words: Evolutionary adaptations

4.0 Origin, evolution and diversification of life; natural selection; levels of selection. Types of selection (stabilizing, directional etc.); sexual selection; genetic drift; gene flow; adaptation; convergence; species concepts; Life history strategies; adaptive radiation; biogeography and evolutionary ecology; Molecular evolution; molecular clocks;

Duration

8hours

8hours

5hours

systems of classification: cladistics and phenetics; molecular systematics; gene expression and evolution.

Key words: Evolutionary research

5.0 Evolutionary Biology – Lamarck; Darwin–concepts of variation, adaptation, struggle, fitness and natural selection; Spontaneity of mutations; the evolutionary synthesis. The evolutionary time scale; Eras, periods and epoch; Origins of unicellular and multi cellular organisms; Hardy – Weinberg law.

4hours

Key words: History, Darwinism

Note: Course content involves 100% Theory

REFEF	REFERENCES								
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1.	Elements of Ecology	SA. Nasim,	Axis Books Pvt.Ltd,	2	2012				
2.	A Textbook of Ecology.	SK Dubey	Wisdom Press. New Delhi	4	2010				
3.	Genetics	P.S.Verma & V.K. Agarwal,	S.Chand & Company Pvt Ltd	3	2010				
4.	Elements of Ecology,	Sharma P.D	Rastogi Publishers, Meerut.	1	1999.				

RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Cytology, Genetics, Evolution and Ecology.	P S Verma and V K Agarwal.	S. Chand & Co. Ltd	2	2005			
2.	Ecology Theories & Application	peter Stiling	PHI Learning Pvt .Ltd,	4	2009			

LIST E- SOFT-CORE ABILITY ENHANCEMENT COURSES

- 1. Methods in Research
- 2. Pathological basis of Diseases
- 3. Food processing and Packaging

SECOND TEAK - SEMESTER - III										
Course Title		METHODS IN RESEARCH								
Course Type	Soft Core- Ability Enhancement		Total Hours	30	Hours/Week			02	Credits	02
Course Code	Evaluation -		Internal	C	C1+C2 = 15+15		+15	30 Marks		100
Course Coue			External	Dura	ration C3		3 03Hrs		C3 03Hrs 70 Marks	

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Understand and apply the concept of various representations of data				
CO-2	Understand and apply the measures of central tendency				
CO-3	Understand and apply the types of correlations and regressions				
CO-4	Understand Characteristics and Function of Research				
CO-5	Understand Techniques involved in defining the problem.				

	MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Select, use and interpret results of descriptive statistical methods effectively	PSO -1	Remember				
CLO-2	Demonstrate an understanding of the central concepts of modern statistical theory and their probabilistic foundation;	PSO -2	Understand				
CLO-3	Select, use, and interpret results of, the principal methods of statistical inference and design	PSO- 2	Remember				
CLO-4	Understand the Research and scientific methods	PSO -3	Remember				
CLO-5	Understand the Goals and Criteria for identifying problems	PSO -4	Apply				

COURSE CONTENTS

Duration

8hours

1.0 Meaning of Research - Function of Research Meaning of Research - Function of Research - Characteristics of Research - Steps involved in Research - Research in Pure and Applied Sciences -Inter Disciplinary Research. Factors which hinder Research -Significance of Research - Research and scientific methods -Research Process- Criteria of good Research - Problems encountered by Researchers - Literature review.

keywords: types, criteria of research

2.0 Statistical survey – Organizing, planning and executing the survey. Source of data - Primary and secondary data, collection, observation, interview, enquiry forms, questionnaire schedule and check list. Classification and tabulation of data. Diagrammatic and graphic presentation of data.

key words: mini survey

3.0 Measures of central tendency - arithmetic mean, median, mode, quartiles, deciles and percentiles. Measures of variation - range, quartile deviation, mean deviation, standard deviation, Coefficient of variation. Correlation analysis - Scatter diagram, Karl's Pearson's coefficient of correlation and Spearman's rank method. Regression analysis.

key words: big data analytics,

4.0 Probability - Definition, concepts, theorems (proof of the theorems not necessary) and calculations of probability - Simple problems. Theoretical distributions –Binomial, Poisson and normal distribution - Simple problems (proof of the theorems not necessary). Correlation, regression and ANOVA: Analysis of variance: One way and two way ANOVA, MONOVA, SPSS

6hours

keywords: probability, regression

Note: Course content involves 100% Theory

REFERENCES								
S1.No	No Title of the book Name of the author		Name of the publisher	Edition	Year of publication			
1	Research Methodology, Methods and <u>Techniques</u>	C.R. Kothari,	New Age International Publishers. New Delhi.	2	2001			
2	Biostatistics: A Foundation for Analysis in the Health Sciences	Wayne W. Daniel	John Willey and Sons Inc., USA.	9	2006			
3	Introduction to bioinformatics	Attwood, T. K., and Parry-Smith, D.J	Pearson Education Ltd., Delhi, India	2	1999			

RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Modern Experimental Biochemistry	Rodney F. Boyer	Benjamin- Cummings Publishing, Redwood City, CA	2	1993.			

Course Title	PATHOLOGICAL BASIS OF DISEASES									
	Soft Core- Ability		Total	20	Hours /W		loolz	00	Cradita	00
Course Type	Enhancement		Hours	30 100		JIS/ WEEK		02	Creans	04
Course Code		Evolution	Internal	C	21+C2	2 = 15	+15	0	30 Marks	100
Course Code		Evaluation	External	Dura	tion	C3	03H:	rs 7	70 Marks	100

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Understand compliments and supplements the necessary knowledge students have gained in Physiology				
CO-2	Understand and Consequently it incorporates topics like cellular adaptations, inflammation, neoplasia, cellular ageing and other infectious diseases				
CO-3	Understand and apply the necessary inputs for the other disciplines like				

	MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Understand compliments and supplements the necessary knowledge students have gained in Physiology	PSO -1	Remember					
CLO-2	Understand and Consequently it incorporates topics like cellular adaptations, inflammation, neoplasia, cellular ageing and other infectious diseases	PSO- 2	Understand					
CLO-3	Understand and apply the necessary inputs for the other disciplines like Pharmacology, social and preventive medicine, medicinal biochemistry etc	PSO- 2	Remember					

COURSE CONTENTS

Duration

6hours

6hours

1.0 Introduction: History of pathology, Basic definitions and common terms used in pathology, Survival mechanism and disease, microscopic and cellular pathology, scope and techniques used.

keywords: pathology, survival

2.0 Role of Inflammation in disease Basic concepts with suitable examples of general features of acute and chronic inflammation: Vascular Changes, cellular events, important chemical mediators of inflammation, Morphological effects inflammation response, Granulomatus Inflammation.

keywords: inflammatory responses

3.0 Role of Tissue repair Healing and Fibrosis Basic mechanism of tissue regeneration, and repair by healing, scar formation and fibrosis Common Hemodynamic Disorders in diseases An overview of Edema, hyperemia, congestion, hemorrhage, hemostasis and thrombosis, Embolism, Infarction and shock with suitable examples

keywords: tissue repair, disorders

4.0 Principles of First Aid Management: Principles of First Aid. Causality assessment. Priorities of first aid, unconsciousness and recovery positions. Resuscitation, control of major bleedings, chocking, and treatment of shocks. Emergency aid in schools and others. Patient management and care, labeling of causalities. Approach to a causality. Handling and transport of injured persons. Disaster management and multiple causalities, Internal and external bleeding, injuries to muscles, joints and bones, stroke. Miscellaneous injuries, splinting skill tests, head, neck, back, chest, abdomen injuries.

keywords: Principles of First Aid, Causality assessment

5.0 Emergency Care: Poisoning - bites - stings. Drug abuse. Frostbite and cold exposure. Burns and Scalds. Heat stroke, heat cramps and heat exhaustion Accident reporting, first aid to victims of road accidents. Patient assessment and management, breathing emergencies, defibrillation. Sudden illness - heart attack, stroke, fainting, convulsion epilepsy, prevention of heart attack and apoplexy.

6hours

keywords: Accident reporting

Note: Course content involves 100% theory

DEFEDENCES	
KEI EKENCES	

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1	Medical Laboratory Technology Methods and Interpretations	Ramnik. Sood	Jaypee Brothers Medical Publishers	6	2009				
2	General And Systematic Pathology	J.,Ed. Underwood and J. C. E. Underwood	Churchill Livingstone	2	1996				
3	Pathologic Basis of Disease	Robbins and Cotran	Saunders Publishers	8	2009				

RECOMMENDED BOOKS								
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Basic Pathology	. Kumar, Abbas, Fausto and Mitchell; Robbins	Saunders Publication	9	2012			

Course Title	FOOD PROCESSING AND PACKAGING									
Course Type	Soft Core- Ability Enhancement		Total Hours	30	Hours/Week		02	Credits	02	
Course Code		Evolution	Internal	C	$1+C_{2}^{2}$	2 = 15	+15		30 Marks	100
Course Code	Evaluation		External	Dura	tion C3 03Hr		rs ′	70 Marks	100	

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Understand the concepts of food processing and actively participate in every facet of the country's growing food industry.					
CO-2	Understand about food systems in the production, processing and consumption of food and an appreciation of their impact on society					
CO-3	Understand the nature of food and human nutrition and an appreciation of the importance of food to health					
CO-4	Learn skills in researching, analyzing and communicating food issues, skills in experimenting with and preparing food by applying theoretical concepts					
CO-5	Understand and apply the skills in designing, implementing and evaluating solutions to food situations.					

MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will	Addressed				
	learn to					
CLO-1	Explain the requirements for meat export and chemical and physiological structure of meat.	PSO 1	Remember			
CLO-2	Demonstrate processing techniques used to produce a variety of milk products.	PSO 2	Understand			
CLO-3	Analyse the process of harvesting, processing and storage of seafood.	PSO 2	Analyse			
CLO-4	Evaluate variety of egg products produced in the food processing industry including egg structure and egg quality.	PSO 3	Remember			
CLO-5	Understand the sources and processing of Edible Fats and Oils.	PSO 4	Apply			

COURSE CONTENTS

1.0 Scope of food processing, principles of food processing and preservation. Processing and preservation by heat blanching, pasteurization, sterilization and UHT processing, canning, extrusion cooking, dielectric heating, microwave heating, baking, roasting and frying, etc.

Key words: raw food materials

2.0 Processing and preservation by low temperature, refrigeration, freezing, dehydro-freezing, cold storage methods. Processing and preservation by dehydration, drying, concentration and evaporation- types of dryers and their suitability for different food products, ultra filtration, reverse osmosis.

Key words: mincing and macerating, liquefaction

Definitions and functions of packaging , MAP, CAP, Vacuum 3.0 packing, Packaging requirements and selection of packaging materials; Types of packaging materials: Paper: Pulping, **6hours** fibrillation and beating, types of papers and their testing methods.

Key words: Aseptic processing

Duration

6hours

4.0 Food Quality Indices – Meat and Meat Products, Fish and Fish Products, Milk and Dairy Products, Vegetables, Fruits and their Products, Grains, Pulses and Oil Seeds Coffee Tea and Spices Food Adulteration: Definition, Nature of Adulterants, Methods of Evaluation of Food Adulterants and Toxic Constituents. Additives: Meaning, Classification, Types of Additives

6hours

Key words: white meat slaughter

5.0 Food packaging system: Different forms of packaging such as rigid, semi-rigid, flexible forms and different packaging system for (a) dehydrated foods (b) frozen foods (c) dairy products (d) fresh fruits and vegetables (e) meat, poultry and sea foods.

Key words: food spoilage

Note: Course content involves 100% theory

REFEF	REFERENCES								
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1	Food and Beverage Packaging Technology	Richard Coles, Mark J. Kirwan	Wiley Blackwell.	2	2011				
2	Food Processing Handbook	James G.Brennan, Alistair S Grandison	Blackwell.	2	2011				

RECOMMENDED BOOKS

Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Food Packaging Materials	Mahadeviah M & Gowramma RV.	Tata McGraw Hill	1	1996

LIST F- SOFT-CORE SELF STUDY COURSES

- 1. Introduction to Manuscript Writing And Research Presentation
- 2. Advanced Nutrition
- 3. Literature review and publication

Course Title	IN	INTRODUCTION TO MANUSCRIPT WRITING AND RESEARCH PRESENTATION										
Course Type	Soft Co	re- Self Study	Total Hours	30	30 Hours/Week 02		Credits	02				
Course Code	e Code Evaluation		Internal		C1+C2 = 15+15			30 Marks	100			
Course Code			External	Dur	ration C3 03		03	Hrs	70 Marks	100		

	COURSE OBJECTIVES (COs)								
CO No.	Course Objectives								
CO-1	Understand and apply the concept of various representations of data								
CO-2	Understand and apply the measures of central tendency								
CO-3	Understand and apply the types of correlations and regressions								
CO-4	Understand Characteristics and Function of Research								
CO-5	Understand Techniques involved in defining the problem.								

	MAPPING CLO'S WITH PSO's AND CD's										
CLO	Course Learning Outcomes	PSOs	CD's								
No.	On completion of the course the student will	Addressed									
	learn to										
CLO-1	Select, use and interpret results of descriptive statistical methods effectively	PSO- 1	Remember								
CLO-2	Demonstrate an understanding of the central concepts of modern statistical theory and their probabilistic foundation	PSO- 2	Understand								
CLO-3	Select, use, and interpret results of, the principal methods of statistical inference and design	PSO- 2	Remember								
CLO-4	Understand the Research and scientific methods	PSO- 3	Remember								
CLO-5	Understand the Goals and Criteria for identifying	PSO -4	Apply								

COURSE CONTENTS

1.0 Identification of Research Problem: Selecting the Research problem – Necessity of defining the problem – Goals and Criteria for identifying problems for research. Perception of Research problem – Techniques involved in defining the problem – Source 12hours of problems – Personal consideration.

key words: formulation system

2.0 Sources of information: Journals, e-journals, books, biological abstracts, Preparation of index cards, Review writing, Article writing – structure of article. Selection of journals for publication- Impact factor – Citation index and H index. Proposal 12hours writing for funding.

key words: journals, review writing

3.0 Each student will have to choose a scientific article and fhours present it

REFEF	RENCES				
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1	Research Methodology, Methods and Techniques	C.R. Kothari,	New Age International Publishers. New Delhi.	2	2001

Duration

2		Attwood, T.			
	Introduction to bioinformatics	K., and Parry- Smith, D.J	Pearson Education Ltd., Delhi, India	2	1999

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Biostatistics: A Foundation for Analysis in the Health Sciences	Wayne W. Daniel	John Willey and Sons Inc., USA.	9	2006

SECOND YEAR - SEMESTER - III

Course Title		ADVANCED NUTRITION									
Course Type	Soft Core- Self Study		Total	30	Hours /Woolz		ماد	02	Credits	02	
			Hours	Hours		HOUIS/ WCCK		02	Cicuits	04	
Course Code		Evolution			C1+C2	2 = 15	+15		30 Marks	100	
Course Code		Evaluation	External	Dur	ation	C3	03	Hrs	70 Marks	100	

	COURSE OBJECTIVES (COs)								
CO No.	Course Objectives								
CO-1	understand the proximate principles of nutrition with reference to RDA								
CO-2	Understand and analyse and quantification of nutritional content of the food items								
CO-3	Understand and apply The experiments concerned v nutritional assessment.	with energy n	netabolism and						
CO-4	Understand and apply nutritional significance of vita	mins & Mine	rals						
CO-5	Understand and apply basic requirement of nutrition	at different s	stages of life						
	MAPPING CLO'S WITH PSO's AND CD's	5							
CLO No.	Course Learning Outcomes	PSOs	CD's						
	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Select, use and interpret results of descriptive statistical methods effectively	PSO -1	Remember						
CLO-2	Demonstrate an understanding of the central concepts of modern statistical theory and their probabilistic foundation	PSO -2	Understand						
CLO-3	Select, use, and interpret results of, the principal methods of statistical inference and design	PSO -2	Remember						
CLO-4	Understand the Research and scientific methods	PSO -3	Remember						
CLO-5	Understand the Goals and Criteria for identifying problems	PSO- 4	Apply						

Modules

COURSE CONTENTS

Duration

Energy Metabolism: Basal metabolism – Basal metabolic rate – 6hours
 Factors affecting BMR - determination of BMR, direct and indirect
 methods - Benedict's Roth apparatus - respiratory quotient –
 Biological oxygen demand. Anthropometry; Height, Weight, Skin

fold thickness and arm circumference -Their importance in nutrition.

Keywords: energy metabolism, BMR

2.0 Introduction to Nutritional Biochemistry: Carbohydrate; Source of energy; Glycogen, Fibre in diet. Proteins – essential amino acids and non essential amino acids – sources, functions – relation with Marasmus, Kwashiorkar disease. Biological value of proteins.

Fats: Sources- Saturated and unsaturated fatty acids, essential and non essential fatty acids – disorders concerned with fatty acid metabolism – Refsum's disease, Atherosclerosis.

6hours

Keywords: Nutritional Biochemistry

Fat soluble and water soluble vitamins-their source, daily requirements and deficiency manifestations. Role of Vitamins as co-factors- in Electron transport chain; and enzyme reactions; Vitamins involved in haemopoiesis. Role as antioxidants.

Keywords: Vitamins in nutrition

4.0 Minerals Micro, macro and trace elements – daily requirements – functions – deficiency manifestations – Role as electrolytes.-sodium and potassium. Food fads and Facts
 6hours

Keywords: Minerals in nutrition

5.0 Nutrition at different Stages of life: During infancy, School children, adolescence, pregnancy, lactation and aging. Assessment of nutritional status, - methods – intake, Biochemical and clinical methods. Nutrition For Diabetes And Cardiovascular Disease Patients ,Wellness Diets, Medeterranean Diet, Paleo Diet, Fitness Diets, Obesity And BMI Diet And Inflammation, Anti-Inflammatory Diets

Keywords: special diets

Note: Course content involves 100% theory

REFEF	REFERENCES										
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication						
1	Mechanism and Theory in Food Chemistry	Wong, D. W. S	CBS, New Delhi	1	1996						
2	Human Nutrition and Dietetics	Garrow, J. S. and James, W. P. T	Churchill Livingstone Publishers, UK.	10	2000						
3	Newer Methods of Nutritional Biochemistry	Anthony A. Albanase	Academic Press, New York	2	1976						

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Essentials of Food and Nutrition.	Swaminathan, M	The Bangalore Printing and Publishing Co. Ltd., Bangalore	1	2004

SECOND YEAR - SEMESTER - III

Course Title		LITERATURE REVIEW AND PUBLICATION									
Course Type	Soft Core- Self Study		Total Hours	30	Hours/Week		02	Credits	02		
Course Code		Evolution	Internal		C1+C2	2 = 15	+15		30 Marks	100	
Course Code	Evaluation		External	Dur	ration C3 03		03	Hrs	70 Marks	100	

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Understand Techniques involved in defining the problem.				
CO-2	Learn to review and assess scientific literature critically.				
CO-3	Assess the general knowledge and skills to find, interpret				
CO-4	Assess the importance, and keep track of the most relevant literature related to a field of research in which they plan to be active				
CO-5	Write and present an overview of the relevant literature for a specific research topic.				

MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Provide foundation of knowledge on topic	PSO-1	Remember				
CLO-2	Identify inconstancies: gaps in research, conflicts in previous studies, open questions left from other research	PSO- 2	Understand				
CLO-3	Identify need for additional research (justifying your research)	PSO- 2	Remember				
CLO-4	Identify the relationship of works in context of its contribution to the topic and to other works	PSO- 3	Remember				
CLO-5	Place your own research within the context of existing literature making a case for why further study is needed.	PSO -4	Apply				

Modules

COURSE CONTENTS

Duration

1.0 Literature Review and Research Question is the start of the students' research preparation. Independently of whether students have already decided their research topic for their 30hours master's thesis, it is necessary to do a review of existing research in order to identify gaps in the literature, and to justify their own

projects. The course topic the student selects must be in line with his/her research question. It must be agreed upon by the student and his/her main supervisor early in the literature review process.

SECOND YEAR - SEMESTER - IV

Course Title	PROJECTWORK /INDUSTRIAL INTERNSHIP									
Course Type	Hard Core- Project work		Total	20	20 Hou		Hours /Wools		Cradita	10
Course Type			Hours 20		HOUIS/ WEEK		02	Creans	10	
Course Code	Evolution		Internal	C1+C2 = 15+15		3	30 Marks	100		
Course Code		Evaluation	External	Dura	tion	C3	03H	rs 7	70 Marks	100

COURSE OBJECTIVES (COs)								
CO No.	Course Objectives							
CO-1	understand & acquire the ability to make links across different areas of knowledge							
CO-2	generate ,develop and evaluate ideas and information so as to apply these skills to their projected task or work plan							

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Students will acquire the ability to make links across different areas of knowledge and to generate,	PSO-1	Remember					
CLO-2	develop and evaluate ideas and information so as to apply these skills to their projected task or work plan	PSO-2	Understand					

Modules

COURSE CONTENTS

1.0 A student has to choose either Industry Internship or Project work. The duration is 12-15 weeks. At the end of the internship/Project, the student will prepare a report and submit it to the Department. The report will be evaluated for 30 Marks and a Viva Voce examination will be conducted for 40 marks An evaluation of the performance of the candidate either during internship or project work (in house or external) by the respective supervisor shall also be obtained to assist the evaluation process. The Supervisor's evaluation will be obtained in a structured format to enable the department to have a comparative evaluation

LIST G - SOFT-CORE GENERAL COURSES

- 1. Plant tissue culture and Grafting
- 2. Advanced Endocrinology
- 3. Genomics, Proteomics and Bioinformatics

Duration

Course Title	PLANT TISSUE CULTURE AND GRAFTING									
Course Type	Soft Core- Theory		Total Hours	30	Hours/Week		02	Credits	02	
Course	Errolanotion		Internal		C1+C2 = 15+15			30 Marks	100	
Code		Evaluation	External	Dur	ation	C3	03	Hrs	70 Marks	100

SECOND YEAR - SEMESTER - IV

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Understand the basic concept of plant tissue culture				
CO-2	Understand and importance of medicinal plants				
CO-3	Analyze the medications of tribal and folk to treat diseases				
CO-4	Understand the basic concept of traditional knowledge of medicine				
CO-5	Understand the medicinal uses of fruits and vegetables				

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Demonstrate the importance of plant tissue culture	PSO- 1	Remember					
CLO-2	Develop an understanding of medicinal plants	PSO-2	Understand					
CLO-3	Assess the mechanism of drug action of tribal medicine	PSO -2	Understand					
CLO-4	Assess the therapeutic role of plants in day to day life	PSO- 4	Analyse					

Modules

COURSE CONTENTS

1.0 Plant cell and tissue culture – culture media and cell culture. Tissue culture, micropropagation and somaclonal variation. Protoplast culture – isolation and purification of protoplasts, protoplast fusion, genetic modification of protoplasts. Use of reporter genes in transformed plant cells.

> Transgenic plant technology– genetic engineering of plants for pest resistance, virus resistance, Herbicide tolerance, stress tolerance and delay of fruit ripening. Use of plants to produce commercially important proteins, antibodies, viral antigens and peptide hormones.

Key words: Commercial application of Withania somnifera and Musa paradisiaca, Crop Improvement

2.0 Principles and applications of plant tissue culture-techniques and prospects. Recombination by protoplast fusion. Genetic engineering of plants- transfer and expression of genes in plants-transgenic plants, manipulating plants for non-food carbohydrates and lipids,

Duration
production of vaccines and molecular farming. Terminator

genes, BT gene, production of artificial genes. Plant breeding techniques, methods of crop and live stock improvement

keywords: applications of plant tissue culture

3.0 Plant propagation - methods of vegetative propagation- stem cutting, grafting, trenching, layering, suckers, stolons, tubers, corms. Basic nursery methods and green house techniques, **6hours** Advantages of plant propagation

keywords: Plant propagation

Grafting: Conservation of herbs- Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi)- Herbal foods-future of pharmacognosy.
 4hours

key words: Withania somnifera, neem, tulsi

5.0 Plants in day today life - Ocimum sanctum, Aloe vera. Nutritive and medicinal value of some fruits (Orange, Mango, Banana, Lemon, Pomegranate) and vegetables - Greens (Moringa, Solanum nigrum Cabbage).
 4hours

key words: Guava, Sapota

Note: Course content involves 100% theory

REFER	ENCES				
S1.No	Title of the book	Name of the publisher	Edition	Year of publication	
1.	Glossary of Indian medicinal plants,	C.S.I.R, New Delhi.	1	1956.	
2.	The indigenous drugs of India	Kanny, Lall, Dey and Raj Bahadur	International Book Distributors.	2	1984
3.	Herbal plants and Drugs	Agnes Arber	Mangal Deep Publications.	1	1999
4.	Ayurvedic drugs and their plant source	V.V. Sivarajan and Balachandran Indra	Oxford IBH publishing Co	1	1994

RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Ayurveda and Aromatherapy	Miller, Light and Miller Bryan	Banarsidass, Delhi	2	1998			
2.	Principles of Ayurveda	Anne Green	Thomsons, London	2	2000			

SECOND YEAR - SEMESTER - IV

Course Title	ADVANCED ENDOCRINOLOGY										
Course Type	Sof	t Core-	Total	30	0 Hours/Week		k 02		Credits	02	
	Tl	heory	Hours								
Course Code		Evaluat	Internal	C1+C2 = 15+15			+15		30 Marks		100
		ion	External	Dur	ration	C3	03H	lrs	7	0 Marks	100

	COURSE OBJECTIVES (COs)							
CO No.	Course Objectives							
CO-1	Understand the Structure and functions of Hypothalamic and pituitary hormones.							
CO-2	Understand the hormonal regulations of thyroid and parathyroid glands.							
CO-3	Understand the synthesis, secretion, metabolism, regulation and biological effects of adrenal hormones							
CO-4	Understand the structure, metabolism and biological actions of gonads and pancreatic hormones.							
CO-5	Understand the Fundamentals concepts of signal transduction and signaling pathways							

	MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Explain various hormones secreted by endocrine	PSO -1	Understand					
	glands and their functions.							
CLO-2	Understand the anatomy of the endocrine system.	PSO-2	Remember					
CLO-3	Understand the basic properties of hormones.	PSO-2	Understand					
CLO-4	Explain the role of the hormones in maintaining	PSO -3	Remember					
	body function.							
CLO-5	Understand and explain the major endocrine disorders	PSO -4	Apply					

Modules

COURSE CONTENTS

1.0 Introduction and Genetic Control of Endocrinology- Hormones - definition; classical and nonclassical endocrinology. Pituitary hormones and their control by the hypothalamus. Thyroid metabolic hormones. Adrenocortical hormones. Feedback mechanisms (HPA&HPG). Inactivation and degradation of Hypothalamus neurohypophyseal hormones. hormones. Hormone resistant syndrome and multi endocrine neoplasia different types. Melatonins and serotonin - light and dark cycles. RIA and ELISA in Bioassay of hormones. Genetic control of hormone formation

keywords: hormones. bioassay

2.0 Hormones acts through cell surface receptors - Hormones acting through cell surface receptors Hormone - receptor interaction; multiple hormone subunits, scatchard analysis; 61 peptide hormone receptors: types of receptors- beta - adrenergic receptor and insulin receptor- structure and mechanism of action. Signal transducers and second messengers- protein kinases,

Duration

6hours

cAMP, IP3, DAG, Calcium and Calmodulin. Eicosanoids and mechanism of action

keywords: cell surface receptors

3.0 Reproductive Endocrinology -Genetic, endocrine and biochemical aspects of testis and ovarian differentiation and development. Neuroendocrine perspectives of mammalian reproduction. Endocrine, paracrine and autocrine regulation of spermatogenesis, oogenesis, ovulation and steroidogenesis (Testosterone, 17B-estradiol, Progesterone). Control of synthesis and release of steroid hormones. Structure, function and regulation of male and female accessory sex organs.

> Transport of steroid hormones in blood. Conception and contraception. Apoptosis - steroid hormone action at cell level. Hormonal physiology of parturition and lactation.

keywords: hormonal action on reproductive system

4.0 Molecular endocrinology of insulin resistance - Endocrinology of adipose tissues - leptin, gherlin, adiponectin, resistin. Fetal endocrine programming of adult disorders (FEPAD): Adverse effects of glucocorticoids in programming events. Endocrinology of insulin like growth factors (IGF's) and its binding proteins (IGFBP). Modulation of placental hormones and growth factors in FEPAD.

keywords: Molecular endocrinology of insulin

5.0 Nuclear receptors (NR)- General features, Ligands that act via nuclear receptor and its sub classes (Orphan receptor and variant receptors). Domain structure of NR - hormone binding domain,

> antigenic domain and DNA binding domain. Hormone response elements. Detailed study of thyroxine, estrogen, androgen, vitamin D. glucocorticoids. Peroxisome proliferator activated receptor and Liver X Receptor. PPAR in insulin resistance. Receptor activation upregulation and down regulation. Selective estrogen receptor modulator. Endocrine responsive cancer - breast, endometrial and prostate cancers.

keywords: Nuclear receptors

REFE	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of
1.	Fundamentals of biochemistry	Jain, J.L	S.Chand publication	6	2005
2.	Cell Biology, Genetics, Molecular Biology, Evolution & Ecology	Verma P.S. Agarwal V.K	S Chand publication	5	2006
3.	Biochemistry of Signal Transduction and Regulation	Gerhard Krauss	Wiley VCH	3	1999

Note: Course content involves 100% theory

6hours

6hours

4.Concepts in cell & molecular biologySharma, Anuradha TandenNew age publishers3201	010
---	-----

RECOMMENDED BOOKS							
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication		
1.	Biochemistry of Signal Transduction and Regulation	Gerhard Krauss	Wiley VCH	5	2014		
2.	Biochemical Messengers: Hormones, neurotransmitters and growth factors	D. Hardie	Springer	2	2012		

SECOND YEAR - SEMESTER - IV

Course Title		GENOMICS, PROTEOMICS AND BIOINFORMATICS									
Course	Soft Core- Theory		Total	30	Hours/Week		02	Credits	02		
Туре			Hours								
Course	D alastina		Internal	C	C1+C2 = 15+15			30 Marks	100		
Code		Evaluation	External	Dura	tion C3 03H		rs	70 Marks	100		

COURSE OBJECTIVES (COs)						
CO No.	Course Objectives					
CO-1	Understand the basic concept of Bioinformatics					
CO-2	Understand and importance of proteomics					
CO-3	Analyze the genomic study of organisms					
CO-4	Understand the basic concepts of data analysis					
CO-5	Understand the uses of proteomics					

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Demonstrate the importance of proteomics	PSO- 1	Remember					
CLO-2	Develop an understanding of data analysis	PSO- 3	Create					
CLO-3	Assess the uses of proteomics	PSO -2	Apply					
CLO-4	Assess & Analyze the genomic study of organisms	PSO- 4	Analyse					

Modules

COURSE CONTENTS

Duration

1.0 Genomics: Introduction to genomics, comparative genomic databases, objective of genome comparisons, Genome alignments. Proteomics: Overview of proteomics, Experimental techniques, Protein – Protein interaction, databases and software.

Molecular visualization softwares, Structure based drug design, Molecular docking software, Protein structure prediction – comparative modelling, threading.

keywords: comparative genomic databases

2.0 Introduction to bioinformatics. Application of bioinformatics, Bioinformatics resources. Biological databases: overview of biological databases, nucleotide databases (Gen Bank, DDBJ, ENA) Protein structure databases (PDB, SCOP, CATH), Organism specific databases, Bibliographic databases. Sequence analysis: pair wise alignment, multiple sequences alignment, Scoring matrices, Phylogenetic trees. Sequence similarity search, Blast, FASTA, CLUSTAL.

keywords: Application of bioinformatics

3.0 Protein modelling: Introduction, methods of protein modelling, homology or comparative modelling, model refinement, evaluation of the model. Molecular visualization, protein 3D structure using Rasmol.

6hours

keywords: protein modelling

4.0 Docking methods: Three dimensional descriptions of binding site environment and energy calculation, automatic docking method. Three dimensional database search approaches, design of ligands, drug-receptor interactions, automated structure construction methods, AUTODOCK.

8hours

keywords: Docking methods

Note: Course content involves 100% theory

REFERENCES								
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Statistical Methods	R.N.Chopra, S.L.Nayar and I.C.Chopra	C.S.I.R, New Delhi.	1	1956.			
2.	Programming in ANSI C	Kanny, Lall, Dey and Raj Bahadur	International Book Distributors.	2	1984			

RECO	RECOMMENDED BOOKS							
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio			
1.	Introduction to bioinformatics	Attwood, T. K., and Parry-Smith, D.J	Pearson Education Ltd., Delhi, India	2	1999			
2.	Modern Experimental Biochemistry	Rodney F. Boyer	Benjamin- Cummings Publishing	2	1993.			
3.	Developing Bioinformatics Computer Skills -	Wibas C, Jenbeck P	Pearson Education Ltd., Delhi, India	5	2011			

LIST I- SOFT-CORE ABILITY ENHANCEMENT COURSES

- 1. Genetics & Developmental Biology
- 2. Principles of Chemistry
- 3. Fruits and Vegetable preservation

SECOND YEAR - SEMESTER - IV

Course Title		GENETICS & DEVELOPMENTAL BIOLOGY								
Course	Soft C	Core- Ability	Total	20	Hours/Week		Voolz	00	Cradita	0.2
Туре	Enh	ancement	Hours	30			02	Creans	02	
Course		D sheeting		C	C1+C2 = 15+15			30 Marks	100	
Code		Evaluation	External	Dura	tion	C3	03H	rs	70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	No. Course Objectives						
CO-1	Understand and apply the types of inheritance						
CO-2	Understand determination & differentiation of species						
CO-3	Understand the development and sex determination in	humans					
CO-4	Understand the Morphogenesis and organogenesis in a	animals					
CO-5	Apply the principles behind Implications of developme	ntal biology					
	MAPPING CLO'S WITH PSO's AND CD	's					
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Critically evaluate the genotype and phenotype, Sex determination And Inheritance	PSO -1	Understand				
CLO-2	Understand the General concept of organism's development.	PSO- 2	Understand				
CLO-3	Assess the development and sex determination in humans.	PSO- 2	Remember				
CLO-4	know the Morphogenesis and organogenesis in animals	PSO -3	Remember				
CLO-5	Define Implications of developmental biology	PSO -4	Apply				

Modules

COURSE CONTENTS

- 1.0 Classical Genetics: Mendelian genetics: genotype and phenotype, Sex determination and Inheritance: Theories of inheritance. Allele concept- principles of segregation and independent assortment. Chromosomal theory, X - linked inheritance. Dominant and recessive of genes. Common X- linked genetic diseases in human. *key words: X - linked inheritance*
- 2.0 Basic concepts: General concept of organisms development: Potency, commitment, specification, induction, competence, determination & differentiation; morphogenetic gradients; cell fate & cell lineages; genomic equivalence and cytoplasmic determinants; imprinting. General principles of cell-cell communication in development: cell adhesion and roles of different adhesion

Duration

molecules, gap junctions, extracellular matrix, integrins, paracrine factors.

key words: determination & differentiation

 3.0 Fertilization, development and sex determination in humans: Gametogenesis. Sperm & Egg formation; ultra-structure of sperm and ovum, egg types, egg membrane. Fertilization, cleavage, Morula, Implantation, blastula ion, gastrulation, formation of germ layers, axis formation - anterior and posterior. Sex determination chromosomes

key words: Sex determination

- **4.0 Morphogenesis and organogenesis in animals:** Cell aggregation and differentiation in Dictyostelium; axes and pattern formation in Drosophila, organogenesis and regeneration in vertebrates; Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root development; leaf development and phyllotaxy; transition to flowering, floral meristems and floral development in Arabidopsis and Antirrhinum. *key words: Morphogenesis*
- 5.0 Implications of developmental biology: Medical implications of developmental biology genetic disorders in human development, environmental assaults on human development, Future therapies, Environmental regulation of animal development Environment as a part of normal development, Polyphenisms, plasticity and Learning.

6hours

6hours

REFERENCES Sl.No Title of the book Name of the Name of the Edition Year of author publisher publication 1. Rastogi 1 Genetics Gupta PK 1996 **Publications** 2. Prentice Hall Genetics Strickberger 3 of India 2002 3. Oxford Genes VII Benjamin Lewin University 6 2000 Press 4. Evolutionary Brian K. Hall, Academic Developmental Publishers 2 Kluwer 1999 Biology

key words: Polyphenisms	
Note: Course content involves	90% theory & 10%problems

RECO	MMENDED BOOKS				
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio

1.	Developmental Biology,	Gilbert S.F.	Sinauer Associates Inc. Massachuset	9	2010
2.	Molecular Biology of the Cell	Alberts B	Garland Science, USA	3	2002
3.	Animal Regeneration	Diwan A.P., Dhakad N.K.,	Anmol Publications Ltd, India,	1	1996.

SECOND YEAR - SEMESTER - IV

Course Title		PRINCIPLES OF CHEMISTRY								
Course	Soft C	Core- Ability	Total	30	Цол	1ro / W	Voolz	02	Credita	0.2
Туре	Enh	ancement	Hours	30	nours/week		02	Creans	02	
Course		Evolution	Internal	C	C1+C2 = 15+15			30 Marks	100	
Code		Evaluation	External	Dura	tion	C3	03H	rs 7	70 Marks	100

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	CO-1 Understand the stereochemistry, spatial arrangement of atoms/groups and apply it on the course of reactions and mechanism prediction.					
CO-2	CO-2 Describe the fundamental scientific principles in the subfields of chemistry and apply these principles to problems.					
CO-3 Solve problems, think critically and reason analytically as these are applied to scientific problems						
	MAPPING CLO'S WITH PSO's AND CD's					
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will	Addressed				
	learn to					
CLO-1	Remember & Understand the stereochemistry, spatial arrangement of atoms/groups and apply it on the course of reactions and mechanism prediction.	PSO -1	Understand			
CLO-2	Analyse/Describe the fundamental scientific principles in the subfields of chemistry and apply these principles to problems.	PSO- 2	Analyse			
CLO-3	critically think & Solve problems, reason analytically as these are applied to scientific problems	PSO- 4	Apply			

Modules

COURSE CONTENTS

Duration

Bonding: covalent bond ,coordinate bond, coordinate bond formation in transition metals crystal field theory ligand field theory valence bond theory structure, bonding and special properties of water iron in hemoglobin and cytochromes bonding of cobalt in vitb₁₂ magnesium in chlorophyll chelates, types of ligands and complexes

Keywords: transition metals

Electrolytes And Non-Electrolytes osmotic pressure reflection 1.1 coefficient vapour pressure vapour pressure osmometer donnan membrane equilibrium **electrodes** electrode potential hydrogen electrode oxygen electrode

Keywords: electrodes

2.0 **Stereochemistry** importance of stereochemistry position and order of groups around carbon geometric and optical isomerism absolute and relative configuration symmetry view of chirality relation between chirality and optical activity representation of chiral **5hours** structures by fischer structure and stereochemistry of glucose; anomer, epimer, stereoisomer, d and l, + and - r and s and stereochemistry of amino acids

Keywords: stereomers

3.0 Mechanism of organic reactions intermediates and rearrangements in organic reaction reaction energetics classification of reagents and reactions effects of substituents on **5hours** the benzene ring and the reaction mechanism reaction rates, order and Molecularity of reaction

Keywords: organic reactions

4.0 Mechanisms and stereochemistry substitution (electrophilic and nucleophilic - sn1 and sn2 reactions) addition reactions, elimination reactions, rearrangement reactions, ester hydrolysis, property of Aromaticity and resonance

5hours

Keywords: substitution, addition reactions

5.0 Heterocyclic compounds chemistry and biological occurance of the following Furan, Indole, Thiazole, Pterine, Pteridine, **5hours** Isoalloxazine, Pyrrole, Porphyrins, Heme

Keywords: heterocyclic compounds

Note: Course content involves 100% theory

REFEF	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Inorganic Chemistry: Principles of Structure and Reactivity	Huheey / Medhi	Pearson Education India	4	2006
2.	Concise Inorganic Chemistry	J.D. Lee	Oxford University Press;	5	2008
3.	Organic Chemistry	Morrison Boyd & Bhattacharjee	Pearson Education India	7	2010
4.	A Textbook of Organic Chemistry	Bahl Arun & Bahl B.S	S Chand & Company	22	2016

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio
1.	Principles of physical chemistry	B.R. Puri, L.R. Sharma, M.S. Pathania	Vishal Publishing Co.	47	2017
2.	Chemistry for Degree Students	R L Madan	S Chand Publishing	3	2011

SECOND YEAR - SEMESTER - IV

Course Title		FRUITS AND VEGETABLE PRESERVATION								
Course	Soft C	Core- Ability	Total	20	I I and a start of the start		00	Cradita	00	
Туре	e Enhance		Hours	30	Hours/week		02	Creans	02	
Course				C1+C2 = 15+15			30 Marks	100		
Code	Evaluation		External	Dura	tion	C3	03H	rs	70 Marks	100

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	knowledge related to fruit and vegetable preservation					
CO-2	Knowledge of preservation of fruits and vegetables.					
CO-3	Understand about food systems in the production, processing and consumption of food and an appreciation of their impact on society					
CO-4	Understand the nature of food and human nutrition and an appreciation of the importance of food to health					
CO-5	Understand and apply the skills in designing, implementing and evaluating solutions to food situations.					

	MAPPING CLO'S WITH PSO's AND CD's					
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will	Addressed				
	learn to					
CLO-1	Understand the basic concepts related to fruit and vegetable preservation	PSO -1	Understand			
CLO-2	Understand the basic techniques in preservation of fruits and vegetables.	PSO- 2	Understand			
CLO-3	Understand about food systems in the production, processing and consumption of food and an appreciation of their impact on society	PSO- 2	Remember			
CLO-4	Understand the nature of food and human nutrition and an appreciation of the importance of food to health	PSO -3	Remember			
CLO-5	Understand and apply the skills in designing, implementing and evaluating solutions to food situations.	PSO -4	Apply			
Module	s COURSE CONTENTS		Duration			

1.0 Purpose and Scope of Preservation: Objectives of preservation and processing Scope of preservation industry in India.

Keywords: preservation

2.0 Post-harvest Changes and Spoilage: Physical, chemical and microbiological changes in fruits and vegetables Factors affecting growth of microorganisms and the control measures

2hours

2hours

Keywords: spoilage

Food Safety Regulations: Key terms, factors affecting food safety, recent concerns National food law (FSSA), standards and regulations, Food additives and contaminants, Hygiene and 4hours sanitation, HACCP

Keywords: Food Safety Regulations

Principles and Methods of Preservation: Asepsis, Low temperature, High temperature, Removal of moisture, Removal of air, Use of chemical preservatives, Fermentation, Irradiation, 8hours Newer methods

Keywords: preservation methods

5.0 Fruit and Vegetable Processing: Chutney and sauces- Definition, method of preservation, steps in preparation of chutney and sauces. Fruit beverages- Definition and classification, method of preservation (with special emphasis on pasteurization, use of chemical preservatives, sugar), role of various ingredients. Jam, Jelly and Marmalade- definition, role of pectin and theory of gel 14hours formation, method of preservation, steps of preparation, evaluation. Preserves- definition, method of preservation, steps of preservation, evaluation, candied, crystallized and glazed fruits. Picklesdefinition. classification, method of preservation, steps of preparation of vinegar pickles, evaluation.

Keywords: Fruit and Vegetable Processing, preservation

REFEF	RENCES				
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Food Microbiology	Frazier WC and Westhoff DC	Tata McGraw- Hill Publishing Company Ltd	1	1995
2.	Food Processing Principles and Applications	Ramaswamy H and Marcott M	CRC Press	1	2005
3.	Food Processing and Preservation	Subbalakshmi G, Udipi SA	New Age International Publishers	1	2007

Note: Course content involves 100% theory

			Delhi		
4.	The Food Safety and Standards Act along with Rules and Regulations.	Westhoff DC	Commercial Law Publishers (India) Pvt Ltd	2	2011

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Food Safety-Theory and Practice	Knechtges LI	Jones and Barlette Learning. USA	2	2012

LIST I- SOFT-CORE SKILL ENHANCEMENT COURSES

- 1. QA, QC AND GMP
- 2. Microbiology
- 3. Biosafety, Bioethics and IPR

SECOND YEAR - SEMESTER - IV

Course Title		QA, QC and GMP								
Course	Soft	Core- Skill	Total	30	Цол	1ro /W	loolz	02	Credito	02
Туре	Enh	ancement	Hours	30	nouis/week		CCK	04	Creans	02
Course		Evolution	Internal	C	21+C2	2 = 15	+15		30 Marks	100
Code		Evaluation	External	Dura	tion	C3	03H	rs	70 Marks	100

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Understand the cGMP aspects in a pharmaceutical industry					
CO-2	To appreciate the importance of documentation					
CO-3	To understand the scope of quality certifications applicable to Pharmaceutical industries					
CO-4	To understand the responsibilities of QA & QC departments.					
CO-5	To appreciate the importance of documentation					

	MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Understand the cGMP aspects in a pharmaceutical	PSO -1	Understand				
	industry						
CLO-2	To appreciate the importance of documentation	PSO-2	Understand				
CLO-3	To understand the scope of quality certifications	PSO-2	Remember				
	applicable to Pharmaceutical industries						

CLO-4	To understand the responsibilities of QA & QC departments.	PSO -3	Apply
CLO-5	To appreciate the importance of documentation	PSO -4	Remember

COURSE CONTENTS

1.0 Introduction: Concept and evolution and scopes of Quality Control and Quality Assurance, Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Q series guidelines. Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non clinical testing, control on animal house, report preparation and documentation. CPCSEA guidelines

Keywords: QC,QA,GMP

2.0 Quality Assurance: Basic concept of quality, difference between QC and QA, quality audit, types of quality audits, concept of TQM, ISO 9000 series. Elementary study of WHO guidelines. Different documents prepared by QA department (batch manufacturing record, master formula record, validation master plan). Basic concept of validation, types of validation, different validation parameters, protocols for process validation.

Keywords: Validation, record maintainace

- 3.0 Introduction to good manufacturing practices (GMP), good clinical practices (GCP) and good laboratory practices (GLP). Schedule M. Standard operating procedure (SOP): Introduction, preparation, validation and revision. Documentation: Protocols, forms and maintenance of records in pharmaceutical industry, preparation of document for investigational new drug (IND), new drug application (NDA), abbreviated new drug application (ANDA) and export registration. Introduction to 21-Code of federal regulations. Current good manufacturing practices (c-GMP) according to guidelines United States Food and Drug Administration (USFDA), difference between GMP and c-GMP.
 - Sampling: Introduction, WHO guidelines, sampling plans and techniques, operating characteristics curves, maintenance of sampling records of finished product and packaging material.

Keywords: sampling, GMP

4.0 Manufacturing operations and controls: Sanitation of manufacturing premises, mix-ups and cross contamination. processing of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, packaging, reprocessing, salvaging, handling of waste and scrap disposal

8hours

Keywords: Operational controls

Note: Course content involves 100% theory

REFERENCES

Duration

6hours

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Quality Assurance Guide	organization of Pharmaceutica 1 Procedures of India	International Pharmacopia	3	1996.
2.	Good Laboratory Practice Regulations	Sandy Weinberg	Marcel Dekker Series	2	1995
3.	General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms	WHO	International Pharmacopia	3	2005

RECO	MMENDED BOOKS				
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	The drugs and cosmetics act 1940	Deshpande Nilesh Gandhi	Susmit Publishers	4	2006
2.	Quality Systems and Controls for Pharmaceuticals	Sarker DK	John Wiley & Sons	1	2008

SECOND YEAR - SEMESTER - IV

Course Title				MICR	OBIO	LOGY	7			
Course	Soft	Core- Skill	Total	30	Цол	1ro /W	aalz	02	Credito	0.2
Туре	Enh	ancement	Hours	30	nouis/week		CCK	02	Creans	02
Course		Evolution	Internal	C	21+C2	2 = 15	+15		30 Marks	100
Code		Evaluation	External	Dura	tion C3 03H		rs	70 Marks	100	

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Analyse the diversity of microorganisms, bacterial cell structure and function, microbial growth and metabolism.					
CO-2	Identify the microorganisms in environment.					
CO-3	Evaluate and apply the microorganisms in various industries					
CO-4	Explain the role of microorganisms in food and industrial production and preservation.					
CO-5	Explain the role of microorganisms in antibiotics production					

MAPPING CLO'S WITH PSO's AND CD's								
CLO	CLO Course Learning Outcomes			PSOs	CD's			
No.	On compl	etion of the	cours	se the stud	ent	will	Addressed	
	learn to							
CLO-1	Describe the	e structure	and	functions	of	major	PSO -1	Understand

	components of microbial cells.		
CLO-2	Understand the concept of microbial growth, its	PSO-2	Remember
	measurement and growth curves.		
CLO-3	Classify microorganisms based on nutrition.	PSO-2	Understand
CLO-4	Isolate bacteria on solid media.	PSO -3	Remember
CLO-5	Discuss various methods of sterilization and disinfection	PSO -4	Analyse

COURSE CONTENTS

1.0 General microbiology: Introduction and scope of microbiology. Brief study of structure and organization of major groups of microorganisms - Archaebacteria, cyan bacteria, eubacteria, fungi, algae, protozoa and viruses. Culture of microorganisms - batch, **6hours** continuous and pure cultures. Control of microorganisms physical, chemical and chemotherapeutic agents. Preservation of Microorganisms.

keywords: Culturing, preservation

2.0 **Environmental Microbiology:** Microbiology of soil – soil microflora, role of soil microbes in biogeochemical cycles (C, N, S) - Marine and fresh water microbiology. Contamination of domestic and marine waters. Water purification and sewage treatment. Microbes in waste water treatments. Microbiology of air.

Key words: Pathogen detection, Environmental Management

3.0 Industrial microbiology Selection of industrially useful microbes. Industrial production of alcohol, vinegar, lactic acid, antibiotics, enzymes and amino acids. Microbiology of food: sources of **6hours** contamination, food spoilage and food preservation methods.

Key words: Food fermentation, , probiotics, prebiotics

4.0 **Clinical Microbiology**: Epidemic, endemic, pandemic and sporadic diseases. Pathogenicity, virulence and infection. Epidemiology of infectious diseases. Bacterial diseases of human (typhoid& gonorrhoea). Fungal diseases of human (superficial, cutaneous, **6hours** subcutaneous and systemic mycoses) Mycotoxins. Viral diseases of human (AIDS & polio). Mycoplasmal, Chlamydial, Rickettsial and protozoan diseases of human.

Key words: Disease management

5.0 Applied Microbiology: Role of microbes in the manufacture of antibiotics and vaccines. Microorganisms as biofertilizers. Microbes as foods - SCP production. Role of microbes in biogas production, petroleum industry and mining. Microbial degradation of lignin, cellulose and pesticides. Microbial immobilization. Microbes in biological warfare.

Key words: Retardation, bioproduction

Note: Course content involves 100% theory

REFERENCES

Duration

6hours

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Microbiology	Pelczer M.J. Chan E.C. S Noel R.Krieg	Tata McGraw Hill publishing company Limited, New Delhi.	5	2004
2.	Microbiology	Lansing M Prescott, John P Harley and Donald A Klein.	Mc Graw Hill, New York.	7	2007
3.	Text Book of Microbiology	Ananthanarayan, R. and Jayaram Paniker, C.K	Orient Longman Ltd., Chennai	7	2007

RECOMMENDED BOOKS									
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Clinical Microbiology Made Ridiculously Simple	Gladwin and Trattler	Medmaster, UK.	6	2013				

SECOND YEAR - SEMESTER - IV

Course Title	BIOSAFETY, BIOETHICS AND IPR								
Course Turse	Soft Core- Skill Enhancement		Total	20 Hou		ırs/W	Ve 02	Credita	02
Course Type			Hours		ek		02	Creatts	02
Course Code	urse Code Evaluation		Internal	C1+C2 = 15+15			30 Marks	100	
Course Code			External	Duration		C3	03Hrs	70 Marks	100

COURSE OBJECTIVES (COs)								
CO No.	Course Objectives							
CO-1	Assess the knowledge of Biosafety and risk assessment of products derived from recombinant DNA research and environment release of genetically modified organisms, national and international regulations							
CO-2	Analyze ethical aspects related to biological, biomedical, health care and biotechnology research							
CO-3	Understand the systemic and cross-functional identification, control and governance of IP assets in sourcing, collaboration and exploitation							
CO-4	Understand different types of intellectual property rights in general and protection of products derived from biotechnology research and issues related to application and obtaining patents							
CO-5	Organize policy of companies and other technology							

MAPPING CLO'S WITH PSO's AND CD's							
CLO	O Course Learning Outcomes PSOs						
No.	On completion of the course the student will	Addressed					
	learn to						

CLO-1	Distinguish knowledge of Biosafety and risk assessment of products derived from recombinant DNA research and environment release of genetically modified organisms, national and international regulations	PSO -1	Understand
CLO-2	Analyze ethical aspects related to biological, biomedical, health care and biotechnology research	PSO- 2	Remember
CLO-3	Differentiate systemic and cross-functional identification, control and governance of IP assets in sourcing, collaboration and exploitation	PSO- 2	Understand
CLO-4	Analyze different types of intellectual property rights in general and protection of products derived from biotechnology research and issues related to application and obtaining patents	PSO -3	Remember
CLO-5	Organize policy of companies and other technology	PSO -4	Apply

COURSE CONTENTS

 Biosafety: Introduction; Historical Background; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals;.

keywords: Recommended Biosafety Levels

1.1 Biosafety guidelines: Government of India; Definition of GMOs & LMOs; Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of National Regulations and relevant International Agreements including; Cartegana Protocol

keywords: Biosafety guidelines

2.0 Bioethics: Ethical implications of biotechnological products and techniques. Social and ethical implications of biological weapons. Ethics in Clinical trials

keywords: Ethical implications

3.0 Introduction to Intellectual Property: Types of IP: Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of GMOs IP as a factor in R&D; IPs of relevance to Biotechnology and few Case Studies

keywords: Intellectual Property

3.1 Agreements and Treaties: History of GATT & TRIPS Agreement; Madrid Agreement; Hague Agreement; WIPO Treaties; Budapest Treaty; PCT; Indian Patent Act 1970 & recent amendments

keywords: recent amendments

4.0 Basics of Patents and Concept of Prior Art: Introduction to Patents; Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; Specifications: Provisional and

Duration

6hours

2hours

4hours

complete; Forms and fees Invention in context of "prior art"; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, esp@cenet(EPO), PATENTScope(WIPO), IPO, etc.)

keywords: recent amendments

5.0 Patent filing procedures: National & PCT filing procedure; Time frame and cost; Status of the patent applications filed; Precautions while patenting-disclosure/non-disclosure; Financial assistance for patenting-introduction to existing schemes, Patent licensing and agreement Patent infringement- meaning, scope, litigation, case studies

5hours

keywords: Patent filing procedures

Note: Course content involves 100% theory

RENCES				
Title of the book	Name of the author	Name of the publisher	Edition	Year of
Indian Patent Act 1970 Acts & Rules	Bareact	Universal Law Publishing Co. Pvt. Ltd	1	2007
Bioethics and Biosafety in Biotechnology	V. Shree Krishna	New Age International Pvt. Ltd. Publishers	1	2007
MMENDED BOOKS		1		
Title of the book	Name of the Author	Name of the Publisher	Edition	Year of
Genetic Patent Law & Strategy,	Kankanala C	Manupatra Information Solution Pvt. Ltd	1	2007
	Title of the book Indian Patent Act 1970 Acts & Rules Bioethics and Biosafety in Biotechnology MMENDED BOOKS Title of the book Genetic Patent Law & Strategy,	Title of the bookName of the authorIndian Patent Act 1970 Acts & RulesBareactBioethics and Biosafety in BiotechnologyV. Shree KrishnaMMENDED BOOKSName of the AuthorGenetic Patent Law & Strategy,Kankanala C	Title of the bookName of the authorName of the publisherIndian Patent Act 1970 Acts & RulesBareactUniversal Law Publishing Co. Pvt. LtdBioethics and Biosafety in BiotechnologyV. Shree KrishnaNew Age International Pvt. Ltd. PublishersMMENDED BOOKSName of the AuthorName of the PublisherGenetic Patent Law & Strategy,Kankanala CManupatra Information Solution Pvt. Ltd	Title of the bookName of the authorName of the publisherEditionIndian Patent Act 1970 Acts & RulesBareactUniversal Law Publishing Co. Pvt. Ltd1Bioethics and Biosafety in BiotechnologyV. Shree KrishnaNew Age International Pvt. Ltd. Publishers1MMENDED BOOKSName of the AuthorMame of the PublisherEditionGenetic Patent Law & Strategy,Kankanala CManupatra Information Solution Pvt. Ltd1

SOFTCORE -INTERDISCIPLINARY COURSES OFFERED IN II SEMESTER

Course Title		BASICS OF HERBAL TECHNOLOGY								
Course Tune	Soft Core- Interdisciplinary		Total	20	30 Hours/W				Creadita	00
Course Type			Hours	30			CCK	02	Creans	02
Course Code		Enclustion	Internal	C	1+C2	2 = 15	+15	0	30 Marks	100
Course Code	Evaluation		External	Dura	tion	C3	03H	rs 7	70 Marks	100

FIRST YEAR - SEMESTER - II

COURSE OBJECTIVES (COs)							
CO No.	Course Objectives						
CO-1	Understand the basic concept of Ethano medicine.						
CO-2	Understand and importance of medicinal plants						
CO-3	Analyze the medications of tribal and folk to treat diseases						
CO-4	Understand the basic concept of traditional knowledge of medicine						
CO-5	Understand the medicinal uses of fruits and vegetables						

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will learn	Addressed						
	to							
CLO-1	Demonstrate the importance of Ethano medicine	PSO- 1	Remember					
CLO-2	Develop an understanding of medicinal plants	PSO-2	Understand					
CLO-3	Assess the mechanism of drug action of tribal medicine	PSO -2	Understand					
CLO-4	Assess the therapeutic role of plants in day to day life	PSO- 4	Analyse					

COURSE CONTENTS

Duration

1.0 Ethnomedicine – definition, history and its scope – Inter disciplinary approaches in ethanobotany Cultivation -harvesting - processing - storage - marketing and utilization of medicinal plants.

Pharmacognasy - systematic position medicinal uses of the **8hours** following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Goose berry and Ashoka.

Keywords: key words: sidha,Ayurvedha,unani

2.0 Phytochemistry- active principles and methods of their testing – identification and utilization of the medicinal herbs; Catharanthus roseus (cardiotonic), Withania somnifera(drugs acting on nervous system), Clerodendron phlomoides (anti-rheumatic) and Centella asiatica (memory booster).

Analytical pharmacognosy - Drug adulteration - types, methods of drug evaluation – Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds).

keywords: Phytochemicals, alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds

3.0 Conservation of herbs- Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi)- Herbal foods-future of pharmacognosy.

8hours

key words: Withania somnifera, neem, tulsi

Plants in day today life - Ocimum sanctum, Aloe vera. Nutritive and medicinal value of some fruits (Orange, Mango, Banana, Lemon, Pomegranate) and vegetables - Greens (Moringa, Solanum nigrum Cabbage).

key words: Guava, Sapota

Note: Course content involves 100% theory

REFER	REFERENCES								
S1.No	Title of the bookName of the author		Name of the publisher	Edition	Year of publication				
1.	Glossary of Indian medicinal plants,	R.N.Chopra, S.L.Nayar and I.C.Chopra	C.S.I.R, New Delhi.	1	1956.				
2.	The indigenous drugs of India	Kanny, Lall, Dey and Raj Bahadur	International Book Distributors.	2	1984				
3.	Herbal plants and Drugs	Agnes Arber	Mangal Deep Publications.	1	, 1999				
4.	Ayurvedic drugs and their plant source	V.V. Sivarajan and Balachandran Indra	Oxford IBH publishing Co	1	1994				

RECOMMENDED BOOKS								
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio			
1.	Ayurveda and Aromatherapy	Miller, Light and Miller Bryan	Banarsidass, Delhi	2	1998			
2.	Principles of Ayurveda	Anne Green	Thomsons, London	2	2000			

FIRST YEAR - SEMESTER – II

Course Title	BIOPHARMACEUTICALS-I									
Course Turpe	Soft Core- Interdisciplinary		Total	30	Hours /Wools		Voolz	00	Credito	02
Course Type			Hours	rs 30		Hours/ week		04	Cicuits	02
Course Code	Code Evaluation		Internal	C	1+C2	2 = 15	+15		30 Marks	100
Course Code			External	Dura	tion	C3	03H	rs 7	70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	Study the preparation and packaging methodologies in pharmaceuticals.						
CO-2	Demonstrate various drug delivery systems.						
CO-3	Learn the types and preparation methods of tablets, capsules.						
CO-4	Analyse different methods of quality control.						
CO-5	Understand & apply the basic knowledge of nanotechnology and its potential as medicines.						

MAPPING CLO'S WITH PSO's AND CD's						
CLO	0 Course Learning Outcomes PSOs CD's					
No.	On completion of the course the student will	Addressed				

	learn to		
CLO-1	Demonstrate the importance of pharmaceuticals	PSO- 1	Remember
CLO-2	Develop an understanding of various drug delivery systems	PSO- 2	Understand
CLO-3	analyse the types and preparation methods of tablets	PSO- 2	Remember
CLO-4	Assess the therapeutic role of tablets & Capsules	PSO- 3	Remember
CLO-5	Demonstrate the methods of quality control.	PSO- 4	Apply

COURSE CONTENTS

Tablets - Characteristics, advantages and disadvantages. Types of tablets, excipients, granulation methods and machinery involved. Tablet compression, operation-single punch and rotary tablet presses, processing problems, evaluation, packaging. Tablet coating: Types-sugar coating, film coating, compression coating, electrostatic and enteric coating. Film forming materials, formulation of coating solution, equipments for coating, Processing, problems in coating, evaluation.

key words: Tablets, types, excipients

2.0 Capsules: Advantages and disadvantages of capsules. Materials and method of production of hard gelatin capsule, size of capsules, Formulation, method of filling, equipments involved, finishing techniques and evaluation. Storage of capsules. Soft gelatin capsules-shell and capsule content, manufacture, processing and control. Sterilization of injections, formulations, aerosols, ophthalmic preparations, Surgical ligatures and sutures, Blood products and plasma substitutes.

key words: Capsules, types, application

3.0 Packaging materials: Types of glasses and plastics employed for packing and their evaluation. Cosmetics. Introduction, fundamentals of cosmetic science. Formulation, preparation, packaging and evaluation of following Cosmetics- cosmetics for skin and face, Nail polish, lipstick, rouge, Hair preparation-Shampoo, Hair dyes, depilatories, shaving cream, after shave lotion. Oral hygiene preparation-dentifrices, mouth washes.

key words: packaging materials, and their formulation

4.0 Controlled drug delivery systems: Advantages of controlled drug delivery systems. a) An introduction to novel drug delivery systems- Liposomes, noisome, nanoparticles and osmotically controlled systems b) Microencapsulation c) Transdermal drug delivery systems- Formulation and evaluation.

key words: drug delivery systems

5.0 Introduction to Nanotechnology: Properties and Types of Nanomaterials (Quantum dots, Nanoparticles, Nanocrystals, Dendrimers, Buckyballs, and Nanotubes), Green synthesis. Characterization of Nano material; Absorption, Fluorescence, and Resonance; Microscopy measurements: SEM, TEM, AFM and STM. Confocal and TIRF imaging. Applications of nanotechnology in medicine & health, food, agriculture, livestock, aquaculture, forestry and sustainable environment.

Duration

8hours

8hours

8hours

Keywords: Quantum dots, nanomaterials

Note: Course content involves 100% theory

REFER	REFERENCES									
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication					
1	Theory and practice of industrial pharmacy	Leon Lachman, Herbert.A. Lieberrman,	International Book Distributors.	3	2008					
2	Pharmaceutics, The Science of Dosage Form Design:	Michael. E. Aulton;	Churchill Livingstone.	2	2001					

RECOMMENDED BOOKS									
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Pharmaceutical dosage forms: Tablets	Leon Lachman, Herbert.A. Lieberrman	Dekker INC.	3	1999				

FIRST YEAR - SEMESTER - II

Course Title		CLINICAL DIAGNOSIS IN HEALTH AND DISEASE-I									
Course Type	Soft Core- Interdisciplinary		Total	30	Hours /Wo		Voolz	00	Credita	02	
Course Type			Hours		nours/week		02	Cicuits	02		
Course Code	e Code Evaluation		Internal	C	C1+C2 = 15+15		3	30 Marks	100		
Course Code			External	Dura	tion	C3	03H	rs 7	70 Marks	100	

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	Understand the basic concepts in Clinical diagnosis in health and diseases						
CO-2	understand about analysis of body fluids and detection of body metabolites						
CO-3	Analyze exposure to know about liver, heart, brain, lung and kidney function test						
CO-4	Understand the basic concept of pathogens which cause diseases.						
CO-5	Understand the basis of non-communicable diseases.						

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Demonstrate the analysis of body fluids and detection of body metabolites	PSO- 1	Remember					
CLO-2	Develop an understanding of basic concepts in Clinical diagnosis in health and diseases	PSO- 2	Understand					
CLO-3	Assess exposure to know about liver, heart, brain, lung and kidney function test	PSO -2	Understand					
CLO-4	Apply the concept of pathogens which cause diseases	PSO-3	Apply					

CLO-5	Understand	the	basis	of	non-communicable	PSO- 4	Analyse
	diseases.						

Modules	COURSE CONTENTS	Duration
1.0	General health analysis : Introduction: General health, syndrome and common diseases – communicable and non-communicable diseases. Samples for analysis: Blood, urine, pleural fluid, synovial fluid, cerebro spinal fluid and tissues and histology. General checkup: Blood group, Hb, height and weight, waist to hip ratio, electro cardio gram, X-ray, abdomen scan and appearance of scars, urine analysis – routine analysis (protein, sugar, pigments and cells <i>keuwords: sample analysis</i>	6hours
2.0	Clinical Assays: Detection of metabolites and its importance. Tests for liver function: Enzyme assay (SGOT, SGPT, Alkaline phosphatase, GGT), Total protein, albumin /globulin ratio and their significance. Test for kidney function: Urea and creatinine estimation and their significance. keywords: detection of metabolites	бhours
3.0	Clinical diagnosis : Test for heart function: Blood pressure (cystolic and diastolic), lipid profile (cholesterol, triglycerides, HDL, LDL estimation) and their importance. Test for lung function: Chest X- ray, Spirometry. Test for Brain function: EEG, MRI, CT. Test for Surgery: Bleeding time, clotting time. Special test: X-ray, CT, MRI, Doppler, TMT, angioplasty.	6hours
4.0	Clinical Infection : Bacterial, viral, fungal and protozoans. Blood: Total cell count, differential count, erythrocyte sedimentation rate. Infectious diseases: Tuberculosis, Leprosy, Malaria, Hepatitis, Cholera, Dengue, HIV, Chikungunya and H1N1. TORCH – Panel (infertility profile), Infection in pregnancy, Koch postulations – Microscopic examination of body fluids, ELISA and PCR tests. keuwords: infections	6hours
5.0	Non communicable diseases: Diabetes: Blood sugar, urine sugar, glucose tolerance test, HbA1c. Hyper tension: Lipid profile, electrolyte (sodium, potassium, chloride and biocarbonate) investigation. Cancer markers: ELISA and DNA Probs. <i>keywords: Non-communicable diseases and cancer markers</i> Note: Course content involves 100% theory	6hours

REFERENCES								
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Varley's practical clinical Biochemistry	Gowenlock, A.H. and Donald, J	CBS publications	6	2002			
2.	Text book of medical biochemistry	Chatterjee and Shindae	Jaypae Brothers (p) ltd, New Delhi	7	2007			

RECOMMENDED BOOKS							
S1.No	Title of the book	f the book Name of the Author Publisher Edit		Edition	Year of Publication		
1.	Book of Biochemistry with clinical correlations	Devlin, T.M	Willey Publishers	5	2002		
2.	Fundamentals of Clinical chemistry	Burtis and Ashwood	Oxford Science Publications	6	2007		
3.	Clinical Biochemistry	istry Gans, G and Murphy, J.M Churchill Livingstone, Elsevier		4	2008		

SOFTCORE -INTERDISCIPLINARY COURSES OFFERED IN IV SEMESTER

- 1. Plant tissue culture and Grafting
- 2. Biopharmaceuticals-II
- 3. Clinical Diagnosis in Health and Disease-II

SECOND YEAR - SEMESTER - IV

Course Title		PLANT TISSUE CULTURE AND GRAFTING								
Course	Soft Core-		Total	30	Hours /Woolz		02	Cradita	02	
Туре	Inter	disciplinary	Hours	30	nours/week		02	Cleans	02	
Course		Evolution	Internal	C1+C2 = 15+15				30 Marks	100	
Code		Evaluation	External	Dur	ration C3		on C3 03H		70 Marks	100

COURSE OBJECTIVES (COs)					
CO No.	Course Objectives				
CO-1	Understand the basic concept of plant tissue culture				
CO-2	Understand and importance of medicinal plants				
CO-3	Analyze the medications of tribal and folk to treat diseases				
CO-4	Understand the basic concept of traditional knowledge of medicine				
CO-5	Understand the medicinal uses of fruits and vegetables				

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Demonstrate the importance of plant tissue culture	PSO-1	Remember					
CLO-2	Develop an understanding of medicinal plants	PSO-2	Understand					
CLO-3	Assess the mechanism of drug action of tribal medicine	PSO -2	Understand					
CLO-4	Assess the therapeutic role of plants in day to day life	PSO- 4	Analyse					

Duration

1.0	 Plant cell and tissue culture – culture media and cell culture. Tissue culture, micropropagation and somaclonal variation. Protoplast culture – isolation and purification of protoplasts, protoplast fusion, genetic modification of protoplasts. Use of reporter genes in transformed plant cells. Transgenic plant technology– genetic engineering of plants for pest resistance, virus resistance, Herbicide tolerance, stress tolerance and delay of fruit ripening. Use of plants to produce commercially important proteins, antibodies, viral antigens and peptide hormones. Key words: Commercial application of Withania somnifera and Musa paradisiaca, Crop Improvement 	8hours
2.0	Principles and applications of plant tissue culture-techniques and prospects. Recombination by protoplast fusion. Genetic engineering of plants- transfer and expression of genes in plants-transgenic plants, manipulating plants for non-food carbohydrates and lipids, production of vaccines and molecular farming. Terminator genes, BT gene, production of artificial genes. Plant breeding techniques, methods of crop and live stock improvement <i>keuwords: annlications of plant tissue culture</i>	8hours
3.0	Plant propagation - methods of vegetative propagation- stem cutting, grafting, trenching, layering, suckers, stolons, tubers, corms. Basic nursery methods and green house techniques, Advantages of plant propagation <i>keuwords: Plant propagation</i>	6hours
4.0	Grafting: Conservation of herbs- Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi)- Herbal foods-future of pharmacognosy. <i>key words: Withania somnifera, neem, tulsi</i>	4hours
5.0	Plants in day today life – <i>Ocimum sanctum, Aloe vera.</i> Nutritive and medicinal value of some fruits (Orange, Mango, Banana, Lemon, Pomegranate) and vegetables - Greens (<i>Moringa, Solanum nigrum</i> Cabbage).	4hours

key words: Guava, Sapota Note: Course content involves 100% theory

REFERENCES								
Sl.No	Title of the book	Title of the bookName of the authorName of the publisher		Edition	Year of publication			
1.	Glossary of Indian medicinal plants,	R.N.Chopra, S.L.Nayar and I.C.Chopra	C.S.I.R, New Delhi.	1	1956.			
2.	The indigenous drugs of India	Kanny, Lall, Dey and Raj Bahadur	International Book Distributors.	2	1984			
3.	Herbal plants and Drugs	Agnes Arber	Mangal Deep Publications.	1	1999			
4.	Ayurvedic drugs and their plant source	V.V. Sivarajan and Balachandran Indra	Oxford IBH publishing Co	1	1994			

RECOMMENDED BOOKS									
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publicatio				
1.	Ayurveda and Aromatherapy	Miller, Light and Miller Bryan	Banarsidass, Delhi	2	1998				
2.	Principles of Ayurveda Anne Green London		Thomsons, London	2	2000				

SECOND YEAR - SEMESTER - IV

Course T	ìtle	BIOPHARMACEUTICALS-II									
Course T	ype	So	ft Core-	Total	30	Hours/Week			02	Credits	02
		Interd	isciplinary	Hours							
Course C	ode		Evolution	Internal	C1+C2 = 15+		+15		30 Marks	100	
			Evaluation	External	Dura	tion	C3	03H	rs ′	70 Marks	100
			COUR	SE OBJEC	TIVES	6 (COs	5)				
CO No.				Course	e Obje	ctive	s				
CO-1	Ana	lyse the d	lesign, structu	are and acti	ivity re	elatior	nship	of dr	ugs.		
CO-2	Ass	ess variou	is modes of sp	oread of con	nmon	disea	ses a	nd th	eir tr	eatment.	
CO-3	Understand the advanced drugs used for treating new diseases.										
CO-4	Remember the mechanism of action of drugs on the biological systems										
CO-5	Critically evaluate the structure of important drugs such as anti-biotics and anti-septics										

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Analyse the design, structure and activity relationship of drugs.	PSO- 4	Analyse					
CLO-2	Understand various modes of spread of common diseases and their treatment.	PSO- 2	Understand					
CLO-3	Understand the advanced drugs used for treating new diseases.	PSO -2	Understand					
CLO-4	Remember the mechanism of action of drugs on the biological systems	PSO- 1	Remember					
CLO-5	Critically evaluate the structure of important drugs such as anti-biotics and anti-septics	PSO- 4	Analyse					

Modules

COURSE CONTENT

Duration

Introduction: Drugs: definition, sources, classification (Biological chemical, commercial and utility), Nomenclature of drugs-Biotransformation, Drug design - factors affecting the stability of drugs, Encapsulation – drug delivery systems and sustained release of drugs.

Keywords: Biotransformation, Encapsulation

2.0 Pharmaceutical Aids: Preservatives: Antioxidants, Sequestering agents, Emulsifiers- Colorantsm, Flavouring agents – Sweeteners, Stabilizers - suspending agents- Ointment bases- Solvents.
 6h

Keywords: Preservatives, suspending agents

 3.0 Common Diseases and Treatment : Insect borne disease -Treatment using drugs Air borne disease-Treatment using drugs , water borne disease- Treatment using drugs, Digestive disorder – treatment, disease of respiratory system- treatment disease of nervous system - treatment , other common disease- treatment

Keywords: disease , Insect borne, Air borne, water borne

4.0 Pathogenicidal Drugs : Antibiotics – Classification, penicillin Chloramphenicol, streptomycin, Tetracycline, Erythromycin Antiseptics and disinfectants - Phenols Halogen compounds, Analgesics, Antipyretics , Anti -inflammatory agents - Sulpha 6hours drugs.

Keywords: Antibiotics, Antiseptics, Antipyretics

5.0 Bio Regulatory Drugs: Cardiovascular drugs - Cardiac glycosides - anti arrhythmic drugs - antihypertensive agents : anti-anginal agents. Diabetes and Hypoglycaemic drugs - two types of diabetes: Diabetes insipidus and diabetes mellitus, Control of diabetes - Insulin -Hypoglycaemic agents. Anticonvulsants, Cancer and antineoplastic drugs - Common causes – anti metabolites

Keywords: Cardiovascular, antihypertensive, Diabetes

REFERENCES								
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	A Complete Text Book of Medical Pharmacology	Srivastava, S K	Avichal Publishing Company	2	2012			
2.	Theory and practice of industrial pharmacy	Leon Lachman, Herbert.A. Lieberrman,	International Book Distributors.	3	2008			
3.	Pharmaceutics, The Science of Dosage Form Design:	Michael. E. Aulton;	Churchill Livingstone.	2	2001			

Note: Course content involves 100% theory

RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication			
1.	Chemistry for Health Science	Satake M and Mido Y	Discovery Publishing	1	2003			
2.	Pharmaceutical dosage forms: Tablets	Leon Lachman, Herbert.A. Lieberrman	Dekker INC.	3	1999			

SECOND YEAR - SEMESTER - II

Course Title	CLINICAL DIAGNOSIS IN HEALTH AND DISEASE-II										
Course Trees	Soft Core-		Total	30	Hours /Woolr		Hours /Weelz		00	Credita	00
Course Type	Interdisciplinary		Hours		HOUIS/ WEEK		04	Cicuits	02		
Course Code		Evolution	Internal	C	C1+C2 = 15+15		0	30 Marks	100		
Course Code	Evaluation		External	Dura	tion	C3	03H	rs 7	70 Marks	100	

	COURSE OBJECTIVES (COs)							
CO No.	Course Objectives							
CO-1	Understand and enhance the practical skills and enable to work in a Hospital setup							
CO-2	understand about analysis of body fluids and detection of body metabolites							
CO-3	Analyze exposure to know about liver, heart, brain, lung and kidney function test							
CO-4	Understand the basic concept of pathogens which cause diseases.							
CO-5	Understand the basis of non-communicable diseases.							

	MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Demonstrate and enhance the practical skills and	PSO- 1	Remember					
	enable to work in a Hospital setup							
CLO-2	Develop an understanding of basic concepts in	PSO-2	Understand					
	Clinical diagnosis in health and diseases							
CLO-3	Assess exposure to know about liver, heart, brain,	PSO -2	Understand					
	lung and kidney function test							
CLO-4	Apply the concept of pathogens which cause	PSO-3	Apply					
	diseases							
CLO-5	Understand the basis of non-communicable	PSO- 4	Analyse					
	diseases.							

Modules

COURSE CONTENTS

1.0 Fundamentals of Clinical Diagnostics: Sterilization Techniques: Physical methods and Chemical methods. General overview of blood banking, blood typing, blood screening in transfusion medical lab *Keywords: Sterilization, blood screening*

2.0 Approaches to diagnosis of infectious diseases I: Isolation of bacteria from mixed culture. Study of morphological, cultural, biochemical characteristics of common bacterial pathogen. Composition and use of important differential media for identification of pathogenic bacteria EMB agar, McConkey agar, TCBS agar and Salmonella-Shigella agar and blood culture media (any two)

Keywords: biochemical characteristics, Isolation

- 3.0 Approaches to diagnosis of infectious diseases II: Enumerate the microbial load on the selected fresh produce from major outlets. Isolate and identify the common microorganisms present on their surface using microbiological, biochemical and PCR techniques. *Keywords:* microbial load, PCR
- 4.0 Immunoserology: Principles and Application I: Antigen-antibody 6hours

Duration

6hours

interaction and its use in diagnosis: Detection and diagnosis of common infectious diseases: Widal and typhi dot for typhoid, Malaria antigen in Malaria, NS1 antigen in Dengue

Keywords: Antigen-antibody interaction

 5.0 Immuno serology: Principles and Application II: Antigenantibody interaction and its use in diagnosis: Detection and diagnosis of common non-infectious diseases: Acylated haemoglobin in Diabetes, TSH levels in Thyroid condition *Keywords: Immuno serology*

Note: Course content involves 100% theory

REFEF	REFERENCES									
S1.No	Title of the bookName of the authorName of the publisher		Edition	Year of publication						
1.	Medical Laboratory Technology Methods and Interpretations	Ramnik Sood	Jaypee Brothers Medical Publishers	6	2009					
2.	Varley's practical clinical Biochemistry	Gowenlock, A.H. and Donald, J	CBS publications	6	2002					
3.	Text book of medical biochemistry	Chatterjee and Shindae	Jaypae Brothers (p) ltd, New Delhi	7	2007					
4.	Essentials of Medical Physiology	Sembulingam, K and Sembulingam, P	Jaypae Brothers (p) ltd, New Delhi	5	2010					

RECOMMENDED BOOKS									
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Book of Biochemistry with clinical correlations	Devlin, T.M	Willey Publishers	5	2002				
2.	Fundamentals of Clinical chemistry	Burtis and Ashwood	Oxford Science Publications	6	2007				
3.	Clinical Biochemistry	Gans, G and Murphy, J.M	Churchill Livingstone, Elsevier	4	2008				

OPEN ELECTIVE COURSES OFFERED TO UNRELATED DEPARTMENT IN II SEMESTER

- 1. Biochemistry in Daily Life
- 2. Biochemistry of Common Disorders

Course Title		BIOCHEMISTRY IN DAILY LIFE							
Course Type	Soft C	ore- Open	Total	30	Hours/Week	02	Credits	02	
	Elective		Hours						
Course Code		Evaluation	Internal	nal C1+C2 = 15+15			30 Marks	100	

FIRST YEAR - SEMESTER - II

			External	Duration	C3	03Hrs	70 Marks		
COURSE OBJECTIVES (COs)									
CO No. Course Objectives									

CO-1	Understand the basic concepts in food, health, Disease
CO-2	Demonstrate the usefulness and concepts of Prebiotics & Probiotics
CO-3	Learn the types and effects of sweetening and food additives
CO-4	Learn the types and application of enzymes.
CO-5	Critically evaluate on food processing & fortification

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Understand the basic concepts in food, health, Disease	PSO 1	Remember					
CLO-2	Demonstrate the usefulness and concepts of Prebiotics & Probiotics	PSO 2	Understand					
CLO-3	Assess the types and effects of sweetening and food additives	PSO 2	Remember					
CLO-4	Assess types and application of enzymes.	PSO 3	Remember					
CLO-5	Critically evaluate on food processing & fortification	PSO 4	Apply					

2.0

COURSE CONTENTS

1.0 Definition of Biochemistry: Definition of life, The different forms of life, micro-organisms to human beings. Building blocks of life. Introduction to the common macro- and micro constituents of unicellular and multi cellular organisms. Differences encountered in plant and animal kingdoms.

Food and Nutrition: Importance of food for existence of life. Modes of nutrition in life forms –Comparable and contrasting features

Human Health and Disease: Nutrition (Health), definition, classification, food and non food sources. Nutraceuticals; use of nutraceuticals in traditional health sciences. Role of omega-3 fatty acids, carotenoids, dietary fiber, phytoestrogens; glucosinolates; organo-sulphur compounds in health and disease (prevention and control).

Keywords: neutraceuticals, Importance of food& health

Prebiotics and probiotics: Mechanics and usefulness of probiotics and prebiotics in gastrointestinal health and other benefits. Beneficiary microbes; prebiotic ingredients in foods; types of prebiotics and their effects on gut microbes.

Functional foods: Definition, development of functional foods, benefits and sources of functional foods in Indian diet. Effects of processing conditions and storage.

Development of nutraceutical and functional foods; Standards for health claims. Process of developing-preclinical & clinical studies. **Food additives:** Definitions, functions and uses in processed food

Food additives: Definitions, functions and uses in processed food products. Chemical,

technological and toxicological aspects of acid, base buffer systems, salts and chelating/sequestering agents, leavening agents, antioxidants, emulsifying and stabilizing agents,

Anti-caking agents, thickeners, firming agents, flour bleaching

Duration

10hours

agents and bread improvers.

Sweetening agents: Artificial sweeteners, composition, uses. Natural and synthetic colors, food Flavors, Spices and flavouring constituents, flavors in food industries.

Keywords: Food additives & Sweetening agents

3.0 Enzymes: Introduction and essentiality to life forms. Use of enzyme in beverages- fruit juices, beer, wine, and distilleries; dairy, baking, oils and fats, plantation products, animal products. Malting and germination of grains – process, characteristics, nutritional benefits and uses.

Domestic use products like detergents. Textiles-Denim processing. Leather industry.

Food processing and fortification: Principles, objectives and rationale, selection and basis of fortificants. Technology of fortifying cereal products. Characteristics of nutrients used in cereal fortification. Fortification methods. Fortification premixes, Design and composition of premixes and quality control. Fortification of bread, pasta, noodles, biscuits, and breakfast cereals.

10hours

Beverages; importance of beverage fortification, Health benefits of fortification, Selection of nutrients for fortification, Levels to be added, Characteristics of fortificants and method of fortification, Bioavailability, Organic Vs inorganic salts. *Health foods;* selection of nutrients, Technology of incorporation of fortificants, bioavailability.

Keywords: Enzymes, Beverages, Fortification Note: Course content involves 100% theory

REFEF	REFERENCES									
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication					
1	Theory and practice of industrial pharmacy	Leon Lachman, Herbert.A. Lieberrman,	International Book Distributors.	3	2008					
2	Pharmaceutics, The Science of Dosage Form Design:	Michael. E. Aulton;	Churchill Livingstone.	2	2001					

RECO	RECOMMENDED BOOKS										
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication						
1.	Pharmaceutical dosage forms: Tablets	Leon Lachman, Herbert.A. Lieberrman	Dekker INC.	3	1999						

] FIRST YEAR - SEMESTER - II BIOCHEMISTRY OF COMMON DISORDERS Soft Core, Open Total

Course Title

eourse mile										
Course Tune	Soft C	ore- Open	Total	20	Uor	tro /W		00	Cradita	00
Course Type	El	ective	Hours	30	Hours/week 02		02	Creans	02	
Course Code		Evolution	Internal	C	1+C2	2 = 15	+15		30 Marks	100
Course Coue		Evaluation	External	Dura	tion	C3	3 03Hrs		70 Marks	100

	COURSE OBDECTIVES (COS)							
CO No.	Course Objectives							
CO-1	Understand compliments and supplements the necessary knowledge students							
00.0	Have gamed in Filyslology							
CO-2	Understand and Consequently it incorporates topics li	ke cellular ad	aptations,					
	inflammation, neoplasia, cellular ageing and other infe	ctious diseas	es					
CO-3	Understand and apply the necessary inputs for the oth	ner disciplines	s like					
	Pharmacology, social and preventive medicine, medicin	nal biochemis	try etc					
	MAPPING CLO'S WITH PSO's AND CD	's						
CLO	Course Learning Outcomes PSOs CD's							
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Understand compliments and supplements the necessary knowledge students have gained in Physiology	PSO- 1	Remember					
CLO-2	Understand and Consequently it incorporates topics	PSO-2	Understand					
	like cellular adaptations, inflammation, neoplasia,							
	cellular ageing and other infectious diseases							
CLO-3	Understand and apply the necessary inputs for the other disciplines like Pharmacology, social and preventive medicine, medicinal biochemistry etc	PSO- 3	Remember					

COUDER OF IECTIVES (CO.)

Modules

COURSE CONTENTS

1.0 Human Physiology: Introduction and brief description of cells, tissues and organs, their functions; Body fluids and their composition. Introduction to molecules as building blocks. Definition and differentiation of disease and disorder, types and causes. Relation between food, environment and illness. Analysis of various biochemical parameters in body fluids and specific tissues during disorders, diseases and forensics

Diagnostic Techniques: Collection and storage of biological samples for clinical use.

Commonly used tests for diagnosis of various diseases and their interpretation.

Blood analysis: Total blood count including ESR, Total serum proteins and their fractions.Blood glucose (GTT) (Fasting and post- prandial), serum lipid fraction–cholesterol, triglyceride,

LDL and HDL, blood urea, and serum calcium.*Urine:* Creatinine, Glucose and protein (albumin). *Enzymes:* SGPT, SGOT and isoenzymes as markers in various disorders and diseases

Keywords: Blood & Urine analysis

- 2.0 Diseases and Disorders (common occurence): Aetiology; classification (if any); causative factors; incidence, symptoms and biochemical aspects and markers for-identification, monitoring, prevention and interventions; and nutritional aspects, overweight and obesity. **Renal disease:** Nephrotic syndrome, Acute and Chronic renal failure- diagnostic procedures and dietary management. Dialysis, medical and nutrition therapy. *Keywords: common occurence*
- **3.0 Gastrointestinal diseases/disorders:** Gastro-oesophageal reflux and esophagitis, Gastritis and Peptic ulcer. Characteristics of and comparison of the stomach and duodenal ulcers. Diagnostic tests for malabsorption, sprue and tropical sprue, Crohn's disease, diarrhoea, constipation, ulcerative colitis, diverticular disease and colon cancer.

Cancer and HIV/AIDS: Biochemistry of carcinogenesis, types,

10hours

Duration

10hours

REFE	RENCES				
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Biochemistry- The Chemical Reactions of Living Cells	David E. Metzler	Academic Press	2	2001
2.	Outlines of Biochemistry	Eric E. Conn, Paul K. Stumpf, George Breuning, Roy H. Doi	John-Wiley and sons	5	2009
3.	Fundamentals of Practical Biochemistry	Mohanty and Basu	BI Publications	1	2002

RECO	RECOMMENDED BOOKS											
Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication							
1.	Biochemistry	Donald Voet, Judith G. Voet	John Wiley and sons	4	2010							
2.	Lehninger- Principles of Biochemistry	David L. Nelson and Michael M. Cox	W. H. Freeman	6	2013							

OPEN ELECTIVE COURSES OFFERED TO UNRELATED DEPARTMENT IN IV SEMESTER

- 1. Lifestyle Disorders
- 2. Fundamentals of Biochemistry

SECOND YEAR -	SEMESTER - IV
---------------	---------------

Course Title	LIFESTYLE DISORDERS									
Course Type	Soft C	ore- Open	Total	30	Цол	1ro / W	aalz	00	Credita	02
course Type	Elective		Hours	30	Hours/ week		04	Cicuits	02	
Course Code		Evolution	Internal	C	1+C2	2 = 15	+15		30 Marks	100
Course Code		Evaluation	External	Dura	tion	C3	03H	rs	70 Marks	100

	COURSE OBJECTIVES (COs)							
CO No.	Course Objectives							
CO-1	Understand the basic concepts health, Disease							
CO-2	Demonstrate the connection between knowledge of anatomy and physiology and real-world situations							
CO-3	Critically evaluate on healthy lifestyle decisions and homeostatic imbalances							

	MAPPING CLO'S WITH PSO's AND CD's										
CLO	Course Learning Outcomes	PSOs	CD's								
No.	On completion of the course the student will	Addressed									
	learn to										
CLO-1	Understand the basic concepts health, Disease	PSO- 1	Remember								
CLO-2	Demonstrate the connection between knowledge of anatomy and physiology and real-world situations	PSO- 2	Understand								
CLO-3	Critically evaluate on healthy lifestyle decisions and	PSO- 3	Apply								
	homeostatic imbalances										

COURSE CONTENTS

- 1.0 Nutrition in various stages of life : Life Cycle nutrition, lactation & pregnancy, Nutrition during pregnancy and lactation. Maternal Health, Practices incompatible with pregnancy, Fetal alcohol syndrome. Nutrition in infancy, childhood Nutrition and **6hours** adolescence. The early development of chronic diseases, Nutrition in adulthood and later years. Illness and nutrition status, Nutrition Medications and complementary therapies Nutrition intervention Keywords: Importance of food& health
- 2.0 Nutrition in GI disorders: Nutrition and disorders of the gastro intestinal tract, parenteral nutrition. Nutrition in Severe stress, Nutrition and diabetes mellitus, Complication of diabetes mellitus, Treatment of diabetes, Medical Nutrition therapy for diabetes, Mastering diabetes control.

Keywords: GI disorders, Nutrition therapy

3.0 Nutrition for cardio disorders: Nutrition and disorders of the heart blood vessels and lungs. Atherosclerosis, hypertension, treatment and prevention of heart disease, Diet strategies, Drug **6hours** therapy, Acute respiratory failure, The metabolic syndrome.

Keywords: Atherosclerosis, metabolic syndrome

4.0 **Nutrition in Renal disorders :** Nutrition and Renal disease, kidney stones and treatment, the nephrotic syndrome, Renal failure,

> kidney transplants and diet, Dialysis and Nutrition, Nutrition and **6hours** liver disorders, Fatty liver and hepatitis, Cirrhosis, Gall stones, Nutrition

Keywords: Renal disease, kidney transplants

5.0 Nutrition in Cancer and HIV : Cancer and HIV infection, How cancer develops, Consequence of cancer, Treatment for cancer,

> Medical Nutrition therapy. How HIV develops, Consequences of HIV **6hours** infection. Medical Nutrition Therapy. Ethical issues in Nutrition care

Keywords: Cancer and HIV infection

Note: Course content involves 100% theory

REFERENCES

Duration

Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Textbook of Medical Biochemistry	M N Chatterjee and Rana shinde	Jaypee Publishers	8	2011
2.	Biochemistry- The Chemical Reactions of Living Cells	David E. Metzler	Academic Press	2	2001
3.	Fundamentals of Practical Biochemistry	Mohanty and Basu	BI Publications	1	2002
4.	Outlines of Biochemistry	Eric E. Conn, Paul K. Stumpf, George Breuning, Roy H. Doi	John-Wiley and sons	5	2009

RECO	RECOMMENDED BOOKS										
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication						
1.	Biochemistry	Donald Voet, Judith G. Voet	John Wiley and sons	4	2010						
2.	Textbook of Clinical Chemistry and Molecular Diagnostics	Carl A. Burtis and Edward R. Ashwood . Tietz	Saunders Publication	5	2012						
3.	Lehninger- Principles of	David L. Nelson and Michael M. Cox	W. H. Freeman	6	2013						

SECOND YEAR - SEMESTER - IV

Course Title	FUNDAMENTALS OF BIOCHEMISTRY									
Course Turse	Soft Core- Open Elective		Total	20	Hours/Week				Cradita	00
Course Type			Hours	30			CCK	02	Creans	02
Course Code	Code Evaluation		Internal	C	1+C2	2 = 15+15			30 Marks	100
Course Code		Evaluation		Dura	tion	C3	03H	rs 7	70 Marks	100

COURSE OBJECTIVES (COs)				
CO No.	Course Objectives			
CO-1	Understand the common concepts of Biochemistry like Blood and its components			
CO-2	Demonstrate the connection between knowledge of organ systems and its inter connection			
CO-3	Understand importance of Nutritional components			
CO-4	Understand importance of macro & micronutrients for life			
CO-5	Critically evaluate on general Implications in health and disease			

MAPPING CLO'S WITH PSO's AND CD's					
CLO	Course Learning Outcomes	PSOs	CD's		
No.	On completion of the course the student will	Addressed			
	learn to				
CLO-1	Understand the common concepts of Biochemistry	PSO- 1	Remember		
	like Blood and its components				

CLO-2	Assess the organ systems and its inter connection	PSO-2	Understand
CLO-3	Critically evaluate on Nutritional components	PSO- 3	Apply
CLO-4	Understand importance of macro & micronutrients	PSO- 2	Understand
	for life		
CLO-5	Critically evaluate on general Implications in health	PSO- 4	Apply
	and disease		

COURSE CONTENTS

1.0 Blood: Composition, cell types red blood cells and white blood cells and their function. Hemostasis, blood clotting, digestion of clot, anticoagulants, blood volume, blood pressure and serum enzymes.

Keywords: cell types

2.0 Respiratory System: Lungs, structure and functions, exchange of gases,

Excretory System: Ultra structure of the nephron, formation of urine.

Hepatobiliary System: Anatomy of the liver, cells types.. Secretory and excretory function and formation of bile.

9hours

Duration

6hours

Digestive System: GI tract, digestion and absorption of carbohydrates, proteins and lipids. Function of HCl

Muscle physiology: Skeletal muscle and smooth muscle, muscle proteins

Keywords: organ systems and its inter connection

3.0 Nutrition: Small molecules: sugars, amino acids, nucleotides, lipids.

Macromolecules: polysaccharides, proteins, nucleic acids. **Carbohydrates**: Dietary sources, dietary fiber, essentiality of carbohydrates.

Proteins: Essential amino acids, nutritional classification of proteins, supplementary value of proteins, protein malnutrition. **Fats**: Sources, invisible fat, essential fatty acids, PUFA.

9hours

Vitamins: Classification, source, deficiency symptoms Fat soluble and water soluble vitamins.

Minerals metabolism: Macro and micro nutrients, sources, requirements, functions and deficiency symptoms.

Water metabolism: distribution in body, water balances, factors affecting water balance.

Keywords: Nutritional components

4.0 Implications in health and disease: Diabetes, Hyper tension, Hypotension, Gout arthritis

6hours

Immunology: Historical development and milestones in immunology Vaccines and Vaccination.
Keywords: Implications in health and disease

Note: Course content involves 100% theory

REFE	REFERENCES								
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1.	Biochemistry- The Chemical Reactions of Living Cells	David E. Metzler	Academic Press	2	2001				
2.	Fundamentals of Practical Biochemistry	Mohanty and Basu	BI Publications	1	2002				
3.	Outlines of Biochemistry	Eric E. Conn, Paul K. Stumpf, George Breuning, Roy H.	John-Wiley and sons	5	2009				
4.	Biochemistry	Donald Voet, Judith G. Voet	John Wiley and sons	4	2010				

RECO	RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Textbook of Medical	M N Chatterjee and Rana shinde	Jaypee Publishers	8	2011				
2.	Textbook of Clinical Chemistry and Molecular Diagnostics	Carl A. Burtis and Edward R. Ashwood . Tietz	Saunders Publication	5	2012				
3.	Lehninger- Principles of Biochemistry	David L. Nelson and Michael M. Cox	W. H. Freeman	6	2013				

Certificate Courses offered for related/Unrelated departments

- 1. Mushroom Cultivation Technology
- 2. Vermi compost Technology

Course Title	MUSHROOM CULTIVATION TECHNOLOGY									
Course Type	Certificate Course		Total Hours	30	Hours/Week 0		02	Credits	02	
Course Code		Enclustion	Internal	C	c_1+c_2	2 = 15	+15		30 Marks	100
Course Code		Evaluation	External	Dura	tion	C3	03H	rs 7	70 Marks	100

	COURSE OBJECTIVES (COs)								
CO No.	Course Objectives	Course Objectives							
CO-1	Enable the students to identify edible and poisonous mu	ıshrooms							
CO-2	Provide hands on training for the preparation of bed and spawn production	for mushroom	m cultivation						
CO-3	Give the students exposure to the experiences of mushroom farms	experts and	functioning						
CO-4	Help the students to learn a means of self employment a	and income ge	eneration						
	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Identify edible types of mushroom	PSO 1	Remember						
CLO-2	Gain the knowledge of cultivation of different types of	PSO 2	Understand						
	edible mushrooms and spawn production								
CLO-3	Manage the diseases and pests of mushrooms PSO 3 Apply								
CLO-4	Learn a means of self-employment and income PSO 4 Apply generation								

Modules

COURSE CONTENTS

Introduction, history of mushroom cultivation; biology of mushrooms; Nutritional value: (Proteins, amino acids, mineral elements, carbohydrates, fibers, vitamins); Medicinal value of mushrooms; Poisonous and edible mushrooms. Scope and importance of mushroom

Keywords: mushroom cultivation

2.0 Cultivation Technology: Infrastructure, equipments and substrates in mushroom cultivation: Polythene bags, vessels etc. Mushroom unit or mushroom house, pure culture, Spawn: types of spawn, preparation of spawn, mushroom bed preparation and factors affecting mushroom bed preparation; compost technology in mushroom production

Keywords: mushroom production

- **3.0 Casing;** raw material used for casing, preparation of casing material; important sanitation during various stages of mushroom cultivation. Cultivation of important mushrooms: General process for the cultivation of Agaricus bisporus and Volvariellavolvaceae *Keywords: raw material used for casing*
- 4.0 Storage and food preparation from mushrooms: Methods of storage of mushroom cultivation, Long term and short term storage of mushrooms Foods/recipes from mushrooms.
 Keywords: Storage and food preparation Note: Course content involves 100% theory

REFERENCES									
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1.	A hand book of edible mushroom, Today & Tomorrows	Kannaiyan, S. Ramasamy, K	Printers & Publishers, New Delhi	1	1980				
2.	A textbook of fungi	Pandey B P	Chand and Company N Delhi	2	1996				

Duration

8hours

3.	Mushroom Production and Processing	Pathak, V. N. and Yadav, N	Agrobios, Jodhpur	1	1998
4.	Mushrooms-The art of cultivation	Harander Singh	Sterling Publishers	1	1991

RECO	RECOMMENDED BOOKS								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Mushroom Cultivation	Tripathi, D.P	Oxford & IBH Publishing	1	2005				
2.	Mushroom Production and	PathakYadavGour	Agrobios (India	2	2010				

Course Title	VERMICOMPOST TECHNOLOGY											
Course Type	Certificate Course		Total 30 Hours/Week (Hours /Wee		02	Credits	02			
course type			Hours	50 110		nours/ week		04	cicuits	02		
Course Code			urse Code Evolution		Internal	С	1+C2	2 = 15	+15	Э	30 Marks	100
Course Code		Evaluation	External	Dura	tion	C3	03H1	rs 7	70 Marks	100		

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	To inculcate concepts of bio fertilizers like vermicomposting						
CO-2	To understand techniques in Vermicomposting.						
CO-3	To increase employability of the students.						
CO-4	To improve the soil quality by promoting the bio fertilizers.						

	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Plan and organize vermi compost processes, identify necessary materials and tools for the production	PSO-1	Remember						
CLO-2	Perform task with due consideration to safety rules, accident prevention regulations and environmental protection stipulations.	PSO-2	Understand						
CLO-3	Apply professional knowledge and soft skills& entrepreneurship while performing the vermi compost production.	PSO-3	Apply						

Modules

COURSE CONTENTS

1.0 General Vermiculture/ Vermicompost: Introduction to vermiculture. Definition, meaning, history, economic important, their value in maintenance of soil structure, role as four r's of recycling reduce, reuse, recycle, restore. His role in bio transformation of the residues generated by human activity and production of organic fertilizers. How does nature works. The matter and humus cycle (product, qualities). Ground population, transformation process in organic matter. Choosing the right worm.

Duration

8hours

Useful species of earthworms. Local species of earthworms. Exotic species of earthworms.

Keywords: Vermiculture, earthworms

2.0 Earthworm Biology and Rearing: Biology of Eisenia fetida. a) Taxonomy, Anatomy, physiology and reproduction of Lumbricidae.
b) Vital cycle of Eisenia fetida: alimentation, fecundity, annual reproducer potential and limit factors (gases, diet, humidity, temperature, PH, light, and climatic factors). Biology of Eudrilus eugeniae. c) Taxonomy Anatomy, physiology and reproduction of Eudrilidae. d) Vital cycle of Eudrilus eugeniae: alimentation, fecundity, annual reproducer potential and limit factors (gases, diet, humidity, temperature, PH, light, eugeniae: alimentation, fecundity, annual reproducer potential and limit factors (gases, diet, humidity, temperature, PH, light, and climatic factors).

8hours

Keywords: Eisenia fetida, Eudrilus eugeniae.

3.0 Vermicompost Technology (Methods and Products): Small Scale Earthworm farming for home gardens - Earthworm compost for home gardens, Conventional commercial composting - Earthworm Composting larger scale, Earthworm Farming (Vermiculture), Extraction (harvest), vermicomposting harvest and processing. Nutritional Composition of Vermicompost for plants, comparison with other fertilizers, Vermiwash collection, composition &use, Enemies of Earthworms, Sickness and worm's enemies. Frequent problems. How to prevent and fix them.

Keywords: Vermiwash, Earthworm Farming, home gardens

4.0 Applied vermiculture: The working group experience with E. fetida populations comportment with farm industrial residues (frigorific, cow places, feed-lot, aviaries exploitations, and solid urban residues). b) Lineaments to vermicomposting elaboration projects. Considerations about economical aspects of this activity. Research and ratability according to different exploitation orientations (worm's meat production, worm's humus production, or integrated projects). Toxins released by the worms (harmful effects)

6hours

8hours

Keywords: farm industrial residues

Note: Course content involves 100% theory

REFEF	REFERENCES								
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1.	Earthworm for Gardeners and Fisherman	Kevin, A and K.E.Lee	CSIRO, Australia, Division of Soils	1	2004				
2.	Earthworms: Their ecology and Relationship with Soils and Land Use	Lee, K.E.	Academic Press, Sydney	1	1985				

3.	Earthworm Biology	Wallwork, J.A	Edward Arnold (Publishers) Ltd. London	1	1983
4.	Biology of Earthworms	Edwards, C.A. and J.R. Lofty	Chapman and Hall Ltd	2	1977

RECOMMENDED BOOKS							
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication		
1.	"Role of Earthworms in Agriculture"	Bhatt J.V. & S.R. Khambata	Indian Council of Agricultural Research, New Delhi	1	1959		

Blue print of question papers for practical exams from I-IV semesters

St. Philomena's College (Autonomous), Mysore						
M.Sc Biochemistry						
Tim	ax Marks: 70					
1.	Procedure writing	5 marks				
2.	Major experiment	35 marks				
3.	Minor experiment/ spotters/calculations	20 marks				
4.	Viva	10 marks				

Blue print of question papers from I-IV semesters

St. Philomena's College (Autonomous), Mysore				
M.Sc Biochemistry				
Time: 3 Hours Max Ma				
PART-A				
Answer any TEN of the following:				
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
	PART-B			
Answ	er any SIX questions:	6x5=30		
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
	PART-C			
Answer any TWO questions:				
21.				
22.				
23.				
